Spaces:
Runtime error
Runtime error
Create App.py
Browse files
App.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import (
|
| 3 |
+
WhisperProcessor, WhisperForConditionalGeneration,
|
| 4 |
+
AutoModelForCausalLM, AutoTokenizer, pipeline,
|
| 5 |
+
)
|
| 6 |
+
from huggingface_hub import snapshot_download
|
| 7 |
+
import sounddevice as sd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from gtts import gTTS
|
| 11 |
+
import pygame
|
| 12 |
+
|
| 13 |
+
class InteractiveChat:
|
| 14 |
+
def __init__(self, model_name="openai/whisper-large", tts_choice="OpenVoice"):
|
| 15 |
+
self.whisper_processor = WhisperProcessor.from_pretrained(model_name)
|
| 16 |
+
self.whisper_model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 17 |
+
self.zephyr_tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
| 18 |
+
self.zephyr_model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
|
| 19 |
+
self.zephyr_pipeline = pipeline("text-generation", model=self.zephyr_model, tokenizer=self.zephyr_tokenizer)
|
| 20 |
+
self.tts_choice = tts_choice
|
| 21 |
+
|
| 22 |
+
def generate_response(self, input_data):
|
| 23 |
+
input_features = self.whisper_processor(input_data, sampling_rate=16_000, return_tensors="pt").input_features
|
| 24 |
+
predicted_ids = self.whisper_model.generate(input_features)
|
| 25 |
+
transcription = self.whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 26 |
+
|
| 27 |
+
# Use the transcription as input for Zephyr
|
| 28 |
+
response = self.zephyr_pipeline(transcription, max_length=1000)[0]["generated_text"]
|
| 29 |
+
return transcription, response
|
| 30 |
+
|
| 31 |
+
def speak(self, text):
|
| 32 |
+
try:
|
| 33 |
+
if self.tts_choice == "OpenVoice":
|
| 34 |
+
model_path = snapshot_download("facebook/mms-tts-eng")
|
| 35 |
+
pipe = pipeline("text-to-speech", model=model_path)
|
| 36 |
+
audio_array = pipe(text).audio
|
| 37 |
+
pygame.mixer.init()
|
| 38 |
+
sound = pygame.sndarray.make_sound(audio_array)
|
| 39 |
+
sound.play()
|
| 40 |
+
pygame.time.delay(int(sound.get_length() * 1000))
|
| 41 |
+
else: # gTTS
|
| 42 |
+
tts = gTTS(text=text, lang='en')
|
| 43 |
+
tts.save("response.mp3")
|
| 44 |
+
pygame.mixer.init()
|
| 45 |
+
pygame.mixer.music.load("response.mp3")
|
| 46 |
+
pygame.mixer.music.play()
|
| 47 |
+
while pygame.mixer.music.get_busy():
|
| 48 |
+
pygame.time.Clock().tick(10)
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print("Error occurred during speech generation:", e)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
with gr.Blocks() as demo:
|
| 55 |
+
model_choice = gr.Dropdown(["openai/whisper-large"], label="Whisper Model", value="openai/whisper-large")
|
| 56 |
+
tts_choice = gr.Radio(["OpenVoice", "gTTS"], label="TTS Engine", value="OpenVoice")
|
| 57 |
+
input_data = gr.Audio(source="microphone", type="numpy", label="Speak Your Message")
|
| 58 |
+
output_text = gr.Textbox(label="Transcription and Response")
|
| 59 |
+
|
| 60 |
+
model_choice.change(lambda x, y: InteractiveChat(x, y), inputs=[model_choice, tts_choice], outputs=None)
|
| 61 |
+
tts_choice.change(lambda x, y: InteractiveChat(y, x), inputs=[tts_choice, model_choice], outputs=None)
|
| 62 |
+
input_data.change(lambda x, model: model.generate_response(x), inputs=[input_data, model_choice], outputs=output_text)
|
| 63 |
+
input_data.change(lambda x, model: model.speak(x[1]), inputs=[output_text, model_choice], outputs=None) # Speak the response
|
| 64 |
+
|
| 65 |
+
demo.launch(share=True)
|