Spaces:
Sleeping
Sleeping
import os, re, time, json, urllib.parse | |
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
import tldextract # for robust registered-domain parsing | |
# Quiet + CPU friendly | |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") | |
# -------- Models / Regex -------- | |
URL_MODEL_ID = "CrabInHoney/urlbert-tiny-v4-malicious-url-classifier" | |
LABEL_MAP = {0: "benign", 1: "defacement", 2: "malware", 3: "phishing"} | |
URL_RE = re.compile(r"""(?xi)\b(?:https?://|www\.)[a-z0-9\-._~%]+(?:/[^\s<>"']*)?""") | |
# Heuristic config | |
KEYWORDS = { | |
"login","verify","account","secure","update","bank","wallet", | |
"password","invoice","pay","reset","support","unlock","confirm" | |
} | |
SUSPICIOUS_TLDS = { | |
"zip","mov","lol","xyz","top","country","link","click","cam", | |
"help","gq","cf","tk","work","rest","monster","quest","live" | |
} | |
# Lazy globals for tokenizer & model | |
_tok = None | |
_mdl = None | |
# -------- Utilities -------- | |
def _extract_urls(text: str): | |
return sorted(set(m.group(0) for m in URL_RE.finditer(text or ""))) | |
def _load_model(): | |
global _tok, _mdl | |
if _tok is not None and _mdl is not None: | |
return _tok, _mdl | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
_tok = AutoTokenizer.from_pretrained(URL_MODEL_ID) | |
_mdl = AutoModelForSequenceClassification.from_pretrained(URL_MODEL_ID) | |
_mdl.eval() | |
return _tok, _mdl | |
def _softmax(logits: torch.Tensor): | |
return F.softmax(logits, dim=-1).tolist() | |
def _lbl_name(idx: int, id2label: dict): | |
if id2label and idx in id2label: | |
return id2label[idx] | |
return LABEL_MAP.get(idx, str(idx)) | |
def _format_scores_md(scores_sorted): | |
lines = ["| Class | Prob (%) | Logit |", "|---|---:|---:|"] | |
for s in scores_sorted: | |
lines.append(f"| **{s['label']}** | {s['prob']*100:.2f} | {s['logit']:.3f} |") | |
return "\n".join(lines) | |
def _markdown_results_header(rows): | |
# rows: [ [url, model_label, model_pct, heur, fused, reason_txt], ... ] | |
lines = [ | |
"| URL | Model | Model Prob (%) | Heuristic | Fused Risk | Reasons |", | |
"|---|---|---:|---:|---:|---|", | |
] | |
for u, lbl, pct, h, fused, reasons in rows: | |
lines.append( | |
f"| `{u}` | **{lbl}** | {pct:.2f} | {h:.2f} | {fused:.2f} | {reasons} |" | |
) | |
return "\n".join(lines) | |
def _forensic_block(url, token_ids, tokens, scores_sorted, cls_vec, elapsed_s, truncated): | |
toks_prev = ", ".join(tokens[:64]) + (" …" if len(tokens) > 64 else "") | |
ids_prev = ", ".join(map(str, token_ids[:64])) + (" …" if len(token_ids) > 64 else "") | |
cls_dim = len(cls_vec) | |
cls_prev = ", ".join(f"{v:.4f}" for v in cls_vec[:16]) + (" …" if cls_dim > 16 else "") | |
l2 = (sum(v*v for v in cls_vec)) ** 0.5 | |
md = [] | |
md.append(f"### 🔍 Forensics for `{url}`\n") | |
md.append(f"- tokens: **{len(tokens)}** • truncated: **{'yes' if truncated else 'no'}**") | |
md.append(f"- inference time: **{elapsed_s:.2f}s**\n") | |
md.append("**Top-k scores**") | |
md.append(_format_scores_md(scores_sorted)) | |
md.append("\n**Token IDs (preview)**") | |
md.append("```txt\n" + ids_prev + "\n```") | |
md.append("**Tokens (preview)**") | |
md.append("```txt\n" + toks_prev + "\n```") | |
md.append("**[CLS] embedding (preview)**") | |
md.append(f"`dim={cls_dim}`, `L2={l2:.4f}`") | |
md.append("```txt\n" + cls_prev + "\n```") | |
return "\n".join(md) | |
# -------- Heuristics -------- | |
def _safe_parse(url: str): | |
# add scheme if missing so urlparse sees netloc | |
if not re.match(r"^https?://", url, re.I): | |
url = "http://" + url | |
return urllib.parse.urlparse(url) | |
def heuristic_features(u: str): | |
feats = {} | |
try: | |
p = _safe_parse(u) | |
feats["scheme_https"] = 1 if p.scheme.lower() == "https" else 0 | |
feats["host"] = p.hostname or "" | |
feats["path"] = p.path or "/" | |
feats["query"] = p.query or "" | |
ext = tldextract.extract(feats["host"]) # subdomain, domain, suffix | |
feats["registered_domain"] = f"{ext.domain}.{ext.suffix}" if ext.domain and ext.suffix else feats["host"] | |
feats["subdomain"] = ext.subdomain or "" | |
feats["tld"] = ext.suffix or "" | |
feats["labels"] = feats["host"].count(".") + (1 if feats["host"] else 0) | |
feats["has_at"] = "@" in u | |
feats["has_port"] = bool(p.netloc and ":" in p.netloc.split("@")[-1]) | |
feats["has_punycode"] = "xn--" in feats["host"] | |
feats["len_url"] = len(u) | |
feats["hyphen_in_regdom"] = "-" in (ext.domain or "") | |
low_host = feats["host"].lower() | |
low_path = feats["path"].lower() | |
feats["kw_in_path"] = int(any(k in low_path for k in KEYWORDS)) | |
feats["kw_in_host"] = int(any(k in low_host for k in KEYWORDS)) | |
# keyword appears in subdomain but not in registered brand | |
feats["kw_in_subdomain_only"] = int( | |
feats["kw_in_host"] and (ext.domain and not any(k in ext.domain.lower() for k in KEYWORDS)) | |
) | |
feats["suspicious_tld"] = int((feats["tld"].split(".")[-1] or "") in SUSPICIOUS_TLDS) | |
# crude “entropy-like” signal for long alnum query blobs | |
alnum = sum(c.isalnum() for c in feats["query"]) | |
feats["query_ratio_alnum"] = (alnum / max(1, len(feats["query"]))) if feats["query"] else 0.0 | |
feats["parse_error"] = False | |
except Exception: | |
feats = {"parse_error": True} | |
return feats | |
def heuristic_score(feats: dict) -> float: | |
"""0..1 suspicious score.""" | |
if feats.get("parse_error"): | |
return 0.70 # unparsable => suspicious | |
score = 0.0 | |
score += 0.25 * feats["kw_in_path"] | |
score += 0.20 * feats["kw_in_subdomain_only"] | |
score += 0.10 * feats["kw_in_host"] | |
score += 0.10 * feats["hyphen_in_regdom"] | |
score += 0.10 * (feats["labels"] >= 4) | |
score += 0.10 * feats["has_punycode"] | |
score += 0.10 * feats["suspicious_tld"] | |
score += 0.05 * feats["has_at"] | |
score += 0.05 * feats["has_port"] | |
score += 0.10 * (feats["len_url"] >= 100) | |
if feats["query"] and len(feats["query"]) >= 40 and feats["query_ratio_alnum"] > 0.9: | |
score += 0.10 | |
return max(0.0, min(1.0, score)) | |
def heuristic_reasons(feats: dict) -> str: | |
if feats.get("parse_error"): | |
return "parse error" | |
rs = [] | |
if feats.get("kw_in_path"): rs.append("keyword in path") | |
if feats.get("kw_in_subdomain_only"): rs.append("keyword in subdomain") | |
if feats.get("kw_in_host") and not feats.get("kw_in_subdomain_only"): rs.append("keyword in host") | |
if feats.get("hyphen_in_regdom"): rs.append("hyphen in registered domain") | |
if feats.get("labels", 0) >= 4: rs.append("deep subdomain nesting") | |
if feats.get("has_punycode"): rs.append("punycode host") | |
if feats.get("suspicious_tld"): rs.append(f"suspicious TLD: {feats.get('tld')}") | |
if feats.get("has_at"): rs.append("@ in URL") | |
if feats.get("has_port"): rs.append("explicit port") | |
if feats.get("len_url", 0) >= 100: rs.append("very long URL") | |
if feats.get("query") and len(feats.get("query", "")) >= 40 and feats.get("query_ratio_alnum", 0) > 0.9: | |
rs.append("long query blob") | |
return ", ".join(rs) if rs else "no heuristic triggers" | |
# -------- Core -------- | |
def analyze(text: str, forensic: bool, show_json: bool): | |
""" | |
One output: Markdown with | |
- verdict | |
- table (model, heuristic, fused + reasons) | |
- optional forensic blocks (tokens, logits, [CLS]) | |
- optional raw JSON (copy/paste) | |
""" | |
text = (text or "").strip() | |
if not text: | |
return "Paste an email body or a URL." | |
urls = [text] if (text.lower().startswith(("http://","https://","www.")) and " " not in text) else _extract_urls(text) | |
if not urls: | |
return "No URLs detected in the text." | |
tok, mdl = _load_model() | |
id2label_raw = getattr(mdl.config, "id2label", None) or {} | |
id2label = {} | |
for k, v in id2label_raw.items(): | |
try: | |
id2label[int(k)] = v | |
except Exception: | |
if isinstance(k, str) and k.startswith("LABEL_"): | |
idx = int(k.split("_")[-1]) | |
id2label[idx] = v | |
header_rows = [] | |
forensic_blocks = [] | |
export_data = {"model_id": URL_MODEL_ID, "items": []} | |
any_unsafe = False | |
for u in urls: | |
# --- Encode & forward for logits / CLS --- | |
max_len = min(512, getattr(mdl.config, "max_position_embeddings", 512) or 512) | |
enc = tok(u, truncation=True, max_length=max_len, return_tensors="pt", return_attention_mask=True) | |
token_ids = enc["input_ids"][0].tolist() | |
tokens = tok.convert_ids_to_tokens(enc["input_ids"][0]) | |
truncated = enc["input_ids"].shape[1] >= max_len and len(tokens) >= max_len | |
t0 = time.time() | |
with torch.no_grad(): | |
out = mdl(**enc, output_hidden_states=True) | |
elapsed = time.time() - t0 | |
logits = out.logits.squeeze(0) # (num_labels,) | |
probs = _softmax(logits) # list[float] | |
hidden_states = out.hidden_states | |
cls_vec = hidden_states[-1][0, 0, :].cpu().tolist() | |
per_class = [ | |
{"label": _lbl_name(i, id2label), "prob": float(probs[i]), "logit": float(logits[i])} | |
for i in range(len(probs)) | |
] | |
per_class_sorted = sorted(per_class, key=lambda x: x["prob"], reverse=True) | |
top = per_class_sorted[0] | |
# --- Heuristics & fusion --- | |
feats = heuristic_features(u) | |
h_score = heuristic_score(feats) | |
mdl_phish_like = sum(s["prob"] for s in per_class_sorted if s["label"].lower() in {"phishing","malware","defacement"}) | |
fused = 0.65 * mdl_phish_like + 0.35 * h_score | |
reasons = heuristic_reasons(feats) | |
header_rows.append([u, top["label"], top["prob"] * 100.0, h_score, fused, reasons]) | |
if fused >= 0.50: | |
any_unsafe = True | |
# collect full details for optional JSON dump | |
export_data["items"].append({ | |
"url": u, | |
"token_ids": token_ids, | |
"tokens": tokens, | |
"truncated": truncated, | |
"logits": [float(x) for x in logits.cpu().tolist()], | |
"probs": [float(p) for p in probs], | |
"scores_sorted": per_class_sorted, | |
"cls_vector": cls_vec, | |
"cls_dim": len(cls_vec), | |
"elapsed_sec": elapsed, | |
"heuristic": feats, | |
"heuristic_score": h_score, | |
"fused_risk": fused, | |
}) | |
if forensic: | |
forensic_blocks.append( | |
_forensic_block( | |
url=u, | |
token_ids=token_ids, | |
tokens=tokens, | |
scores_sorted=per_class_sorted, | |
cls_vec=cls_vec, | |
elapsed_s=elapsed, | |
truncated=truncated, | |
) | |
) | |
verdict = "🔴 **UNSAFE (links flagged)**" if any_unsafe else "🟢 **SAFE (no fused risk ≥ 0.50)**" | |
body = verdict + "\n\n" + _markdown_results_header(header_rows) | |
if forensic and forensic_blocks: | |
body += "\n\n---\n\n" + "\n\n---\n\n".join(forensic_blocks) | |
if show_json: | |
pretty = json.dumps(export_data, ensure_ascii=False, indent=2) | |
body += "\n\n---\n\n**Raw forensics JSON (copy & save):**\n" | |
body += "```json\n" + pretty + "\n```" | |
return body | |
# -------- UI -------- | |
demo = gr.Interface( | |
fn=analyze, | |
inputs=[ | |
gr.Textbox(lines=6, label="Email or URL", placeholder="Paste a URL or a full email…"), | |
gr.Checkbox(label="Forensic mode (tokens, logits, [CLS])", value=True), | |
gr.Checkbox(label="Show raw JSON at the end (copy/paste)", value=False), | |
], | |
outputs=gr.Markdown(label="Results"), | |
title="🛡️ PhishingMail — Model + Heuristics (HF Free CPU)", | |
description=( | |
"We extract links and classify each with a compact malicious-URL model, then fuse with transparent heuristics. " | |
"Table shows Model Prob, Heuristic Score, and Fused Risk with reasons. " | |
"Toggle Forensic mode for tokens/logits/[CLS]." | |
), | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) | |