File size: 34,477 Bytes
36c47f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import gradio as gr
import json
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
import traceback
from datetime import datetime
from packaging import version

# Color scheme for charts
COLORS = px.colors.qualitative.Plotly

# Line colors for radar charts
line_colors = [
    "#EE4266",
    "#00a6ed",
    "#ECA72C",
    "#B42318",
    "#3CBBB1",
]

# Fill colors for radar charts
fill_colors = [
    "rgba(238,66,102,0.05)",
    "rgba(0,166,237,0.05)",
    "rgba(236,167,44,0.05)",
    "rgba(180,35,24,0.05)",
    "rgba(60,187,177,0.05)",
]

# Define the question categories
QUESTION_CATEGORIES = ["simple", "set", "mh", "cond", "comp"]
METRIC_TYPES = ["retrieval", "generation"]

def load_results():
    """Load results from the results.json file."""
    try:
        # Get the directory of the current script
        script_dir = os.path.dirname(os.path.abspath(__file__))
        # Build the path to results.json
        results_path = os.path.join(script_dir, 'results.json')
        
        print(f"Loading results from: {results_path}")
        
        with open(results_path, 'r', encoding='utf-8') as f:
            results = json.load(f)
            print(f"Successfully loaded results with {len(results.get('items', {}))} version(s)")
            return results
    except FileNotFoundError:
        # Return empty structure if file doesn't exist
        print(f"Results file not found, creating empty structure")
        return {"items": {}, "last_version": "1.0", "n_questions": "0"}
    except Exception as e:
        print(f"Error loading results: {e}")
        print(traceback.format_exc())
        return {"items": {}, "last_version": "1.0", "n_questions": "0"}

def filter_and_process_results(results, n_versions, only_actual_versions):
    """Filter results by version and process them for display."""
    if not results or "items" not in results:
        return pd.DataFrame(), [], [], []
    
    all_items = results["items"]
    last_version_str = results.get("last_version", "1.0")
    last_version = version.parse(last_version_str)

    print(f"Last version: {last_version_str}")
    
    # Group items by model_name
    model_groups = {}

    for version_str, version_items in all_items.items():
        version_obj = version.parse(version_str)
        for item_id, item in version_items.items():
            model_name = item.get("model_name", "Unknown")
            
            if model_name not in model_groups:
                model_groups[model_name] = []
            
            # Add version info to the item (both as string and as parsed version object for comparison)
            item["version_str"] = version_str
            item["version_obj"] = version_obj
            model_groups[model_name].append(item)
    
    rows = []
    for model_name, items in model_groups.items():
        # Sort items by version (newest first)
        items.sort(key=lambda x: x["version_obj"], reverse=True)
        
        # Filter versions based on selection
        filtered_items = []
        
        if only_actual_versions:
            # Get the n most recent actual dataset versions
            all_versions = sorted([version.parse(v_str) for v_str in all_items.keys()], reverse=True)
            # Take at most n_versions
            versions_to_consider = all_versions[:n_versions] if all_versions else []
            
            # Filter items that match those versions
            filtered_items = [item for item in items if any(item["version_obj"] == v for v in versions_to_consider)]
        else:
            # Consider n_versions most recent items for this model
            filtered_items = items[:n_versions]
        
        if not filtered_items:
            continue
        
        config = filtered_items[0]["config"]  # Use config from most recent version
        
        # Create row with basic info
        row = {
            'Model': model_name,
            'Embeddings': config.get('embedding_model', 'N/A'),
            'Retriever': config.get('retriever_type', 'N/A'),
            'Top-K': config.get('retrieval_config', {}).get('top_k', 'N/A'),
            'Versions': ", ".join([item["version_str"] for item in filtered_items]),
            'Last Updated': filtered_items[0].get("timestamp", "")
        }
        
        # Format timestamp if available
        if row['Last Updated']:
            try:
                dt = datetime.fromisoformat(row['Last Updated'].replace('Z', '+00:00'))
                row['Last Updated'] = dt.strftime("%Y-%m-%d")
            except:
                pass
        
        # Process metrics based on categories
        category_metrics = {
            category: {
                metric_type: {
                    "avg": 0.0,
                    "count": 0
                } for metric_type in METRIC_TYPES
            } for category in QUESTION_CATEGORIES
        }
        
        # Collect metrics by category
        for item in filtered_items:
            metrics = item.get("metrics", {})
            for category in QUESTION_CATEGORIES:
                if category in metrics:
                    for metric_type in METRIC_TYPES:
                        if metric_type in metrics[category]:
                            metric_values = metrics[category][metric_type]
                            avg_value = sum(metric_values.values()) / len(metric_values)
                            
                            # Add to the running sum for this category and metric type
                            category_metrics[category][metric_type]["avg"] += avg_value
                            category_metrics[category][metric_type]["count"] += 1
        
        # Calculate averages and add to row
        for category in QUESTION_CATEGORIES:
            for metric_type in METRIC_TYPES:
                metric_data = category_metrics[category][metric_type]
                if metric_data["count"] > 0:
                    avg_value = metric_data["avg"] / metric_data["count"]
                    # Add to row with appropriate column name
                    col_name = f"{category}_{metric_type}"
                    row[col_name] = round(avg_value, 4)
        
        # Calculate overall averages for each metric type
        for metric_type in METRIC_TYPES:
            total_sum = 0
            total_count = 0
            
            for category in QUESTION_CATEGORIES:
                metric_data = category_metrics[category][metric_type]
                if metric_data["count"] > 0:
                    total_sum += metric_data["avg"]
                    total_count += metric_data["count"]
            
            if total_count > 0:
                row[f"{metric_type}_avg"] = round(total_sum / total_count, 4)
        
        rows.append(row)
    
    # Create DataFrame
    df = pd.DataFrame(rows)
    
    # Get lists of metrics for each category
    category_metrics = []
    for category in QUESTION_CATEGORIES:
        metrics = []
        for metric_type in METRIC_TYPES:
            col_name = f"{category}_{metric_type}"
            if col_name in df.columns:
                metrics.append(col_name)
        if metrics:
            category_metrics.append((category, metrics))
    
    # Define retrieval and generation columns for radar charts
    retrieval_metrics = [f"{category}_retrieval" for category in QUESTION_CATEGORIES if f"{category}_retrieval" in df.columns]
    generation_metrics = [f"{category}_generation" for category in QUESTION_CATEGORIES if f"{category}_generation" in df.columns]
    
    return df, retrieval_metrics, generation_metrics, category_metrics

def create_radar_chart(df, selected_models, metrics, title):
    """Create a radar chart for the selected models and metrics."""
    if not metrics or len(selected_models) == 0:
        # Return empty figure if no metrics or models selected
        fig = go.Figure()
        fig.update_layout(
            title=title,
            title_font_size=16,
            height=400,
            width=500,
            margin=dict(l=30, r=30, t=50, b=30)
        )
        return fig
    
    # Filter dataframe for selected models
    filtered_df = df[df['Model'].isin(selected_models)]
    
    if filtered_df.empty:
        # Return empty figure if no data
        fig = go.Figure()
        fig.update_layout(
            title=title,
            title_font_size=16,
            height=400,
            width=500,
            margin=dict(l=30, r=30, t=50, b=30)
        )
        return fig
    
    # Limit to top 5 models for better visualization (similar to inspiration file)
    if len(filtered_df) > 5:
        filtered_df = filtered_df.head(5)
    
    # Prepare data for radar chart
    categories = [m.split('_', 1)[0] for m in metrics]  # Get category name (simple, set, etc.)
    
    fig = go.Figure()
    
    # Process in reverse order to match inspiration file
    for i, (_, row) in enumerate(filtered_df.iterrows()):
        values = [row[m] for m in metrics]
        # Close the loop for radar chart
        values.append(values[0])
        categories_loop = categories + [categories[0]]
        
        fig.add_trace(go.Scatterpolar(
            name=row['Model'],
            r=values,
            theta=categories_loop,
            showlegend=True,
            mode="lines",
            line=dict(width=2, color=line_colors[i % len(line_colors)]),
            fill="toself",
            fillcolor=fill_colors[i % len(fill_colors)]
        ))
    
    fig.update_layout(
        font=dict(size=13, color="black"),
        template="plotly_white",
        polar=dict(
            radialaxis=dict(
                visible=True,
                gridcolor="black",
                linecolor="rgba(0,0,0,0)",
                gridwidth=1,
                showticklabels=False,
                ticks="",
                range=[0, 1]  # Ensure consistent range for scores
            ),
            angularaxis=dict(
                gridcolor="black", 
                gridwidth=1.5, 
                linecolor="rgba(0,0,0,0)"
            ),
        ),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=-0.35,
            xanchor="center",
            x=0.4,
            itemwidth=30,
            font=dict(size=13),
            entrywidth=0.6,
            entrywidthmode="fraction",
        ),
        margin=dict(l=0, r=16, t=30, b=30),
        autosize=True,
    )
    
    return fig

def create_summary_df(df, retrieval_metrics, generation_metrics):
    """Create a summary dataframe with averaged metrics for display."""
    if df.empty:
        return pd.DataFrame()
    
    summary_df = df.copy()
    
    # Add retrieval average
    if retrieval_metrics:
        retrieval_avg = summary_df[retrieval_metrics].mean(axis=1).round(4)
        summary_df['Retrieval (avg)'] = retrieval_avg
    
    # Add generation average
    if generation_metrics:
        generation_avg = summary_df[generation_metrics].mean(axis=1).round(4)
        summary_df['Generation (avg)'] = generation_avg
    
    # Add total score if both averages exist
    if 'Retrieval (avg)' in summary_df.columns and 'Generation (avg)' in summary_df.columns:
        summary_df['Total Score'] = summary_df['Retrieval (avg)'] + summary_df['Generation (avg)']
        summary_df = summary_df.sort_values('Total Score', ascending=False)
    
    # Select columns for display
    summary_cols = ['Model', 'Embeddings', 'Retriever', 'Top-K']
    if 'Retrieval (avg)' in summary_df.columns:
        summary_cols.append('Retrieval (avg)')
    if 'Generation (avg)' in summary_df.columns:
        summary_cols.append('Generation (avg)')
    if 'Total Score' in summary_df.columns:
        summary_cols.append('Total Score')
    if 'Versions' in summary_df.columns:
        summary_cols.append('Versions')
    if 'Last Updated' in summary_df.columns:
        summary_cols.append('Last Updated')
    
    return summary_df[summary_cols]

def create_category_df(df, category, retrieval_col, generation_col):
    """Create a dataframe for a specific category with detailed metrics."""
    if df.empty or retrieval_col not in df.columns or generation_col not in df.columns:
        return pd.DataFrame()
    
    category_df = df.copy()
    
    # Calculate total score for this category
    category_df[f'{category} Score'] = category_df[retrieval_col] + category_df[generation_col]
    
    # Sort by total score
    category_df = category_df.sort_values(f'{category} Score', ascending=False)
    
    # Select columns for display
    category_cols = ['Model', 'Embeddings', 'Retriever', retrieval_col, generation_col, f'{category} Score']
    
    # Rename columns for display
    category_df = category_df[category_cols].rename(columns={
        retrieval_col: 'Retrieval',
        generation_col: 'Generation'
    })
    
    return category_df

# Load initial data
results = load_results()
last_version = results.get("last_version", "1.0")
n_questions = results.get("n_questions", "100")
date_title = results.get("date_title", "---")

# Initial data processing
df, retrieval_metrics, generation_metrics, category_metrics = filter_and_process_results(
    results, n_versions=1, only_actual_versions=True
)

# Pre-generate charts for initial display
default_models = df['Model'].head(5).tolist() if not df.empty else []
initial_gen_chart = create_radar_chart(df, default_models, generation_metrics, "Performance on Generation Tasks")
initial_ret_chart = create_radar_chart(df, default_models, retrieval_metrics, "Performance on Retrieval Tasks")

# Create summary dataframe
summary_df = create_summary_df(df, retrieval_metrics, generation_metrics)

with gr.Blocks(css="""

    .title-container { 

        text-align: center; 

        margin-bottom: 10px; 

    }

    .description-text {

        text-align: left;

        padding: 10px;

        margin-bottom: 0px;

    }

    .version-info {

        text-align: center;

        padding: 10px;

        background-color: #f0f0f0;

        border-radius: 8px;

        margin-bottom: 15px;

    }

    .version-selector {

        padding: 15px;

        border: 1px solid #ddd;

        border-radius: 8px;

        margin-bottom: 20px;

        background-color: #f9f9f9;

        height: 100%;

    }

    .citation-block {

        padding: 15px;

        border: 1px solid #ddd;

        border-radius: 8px;

        margin-bottom: 20px;

        background-color: #f9f9f9;

        font-family: monospace;

        font-size: 14px;

        overflow-x: auto;

        height: 100%;

    }

    .flex-row-container {

        display: flex;

        justify-content: space-between;

        gap: 20px;

        width: 100%;

    }

    .charts-container {

        display: flex;

        gap: 20px;

        margin-bottom: 20px;

    }

    .chart-box {

        flex: 1;

        border: 1px solid #eee;

        border-radius: 8px;

        padding: 10px;

        background-color: white;

        min-height: 550px; /* Increased height to accommodate legend at bottom */

    }

    .metrics-table {

        border: 1px solid #eee;

        border-radius: 8px;

        padding: 15px;

        background-color: white;

    }

    .info-text {

        font-size: 0.9em;

        font-style: italic;

        color: #666;

        margin-top: 5px;

    }

    footer {

        text-align: center;

        margin-top: 30px;

        font-size: 0.9em;

        color: #666;

    }

    /* Style for selected rows */

    table tbody tr.selected {

        background-color: rgba(25, 118, 210, 0.1) !important;

        border-left: 3px solid #1976d2;

    }

    /* Add this class via JavaScript */

    .gr-table tbody tr.selected td:first-child {

        font-weight: bold;

        color: #1976d2;

    }

    .category-tab {

        padding: 10px;

    }

    .chart-title {

        font-size: 1.2em;

        font-weight: bold;

        margin-bottom: 10px;

        text-align: center;

    }

    .clear-charts-button {

        display: flex;

        justify-content: center;

        margin-top: 10px;

        margin-bottom: 20px;

    }

""") as demo:
    # Title
    with gr.Row(elem_classes=["title-container"]):
        gr.Markdown("# 🐙 Dynamic RAG Benchmark")

    # Version info
    with gr.Row(elem_classes=["description-text"]):
        gr.Markdown(f"На этом лидерборде можно сравнить RAG системы в разрезе генеративных и поисковых метрик моделей по вопросам разного типа (простые вопросы, сравнения, multi-hop, условные и др.). <li>Вопросы автоматичеки генерируются на основе новостных источников.</li><li>Обновление датасета с вопросами происходит регулярно, при этом пересчитываются все метрики для открытых моделей.</li><li>Для пользовательских сабмитов учитываются последние посчитанные для них метрики.</li><li>Чтобы посчитать ранее отправленную конфигурацию на последней версии данных, используйте submit_id, полученный при первой отправке через клиент (см. инструкцию ниже).</li>")
    
    # Version info
    with gr.Row(elem_classes=["version-info"]):
        gr.Markdown(f"## Версия {last_version}{n_questions} вопросов, сгенерированных по новостным источникам → {date_title}")
    
    # Radar Charts
    with gr.Row(elem_classes=["charts-container"]):
        with gr.Column(elem_classes=["chart-box"]):
            gr.Markdown("### Генеративные метрики", elem_classes=["chart-title"])
            generation_chart = gr.Plot(value=initial_gen_chart)
        
        with gr.Column(elem_classes=["chart-box"]):
            gr.Markdown("### Метрики поиска", elem_classes=["chart-title"])
            retrieval_chart = gr.Plot(value=initial_ret_chart)
    
    # Clear Charts Button
    with gr.Row(elem_classes=["clear-charts-button"]):
        clear_charts_btn = gr.Button("Очистить графики", variant="secondary")
    
    # Metrics table with tabs
    with gr.Tabs(elem_classes=["metrics-table"]) as metrics_tabs:
        with gr.TabItem("Общая таблица"):
            selected_models = gr.State(default_models)
            
            # If dataframe is empty, show a message
            if df.empty:
                gr.Markdown("No data available. Please submit some results.")
                metrics_table = gr.DataFrame()
            else:
                metrics_table = gr.DataFrame(
                    value=summary_df,
                    headers=summary_df.columns.tolist(),
                    datatype=["str"] * len(summary_df.columns),
                    row_count=(min(10, len(summary_df)) if not summary_df.empty else 0),
                    col_count=(len(summary_df.columns) if not summary_df.empty else 0),
                    interactive=False,
                    wrap=True
                )
        
        with gr.TabItem("По типам вопросов"):
            # Create tabs for each category
            category_tabs = gr.Tabs()
            category_tables = {}
            
            # Dictionary to map category codes to display names
            category_display_names = {
                "simple": "Simple Questions",
                "set": "Set-based",
                "mh": "Multi-hop",
                "cond": "Conditional",
                "comp": "Comparison"
            }
            
            with category_tabs:
                for category, _ in category_metrics:
                    if f"{category}_retrieval" in df.columns and f"{category}_generation" in df.columns:
                        with gr.TabItem(category_display_names.get(category, category.capitalize()), elem_classes=["category-tab"]):
                            # Create dataframe for this category
                            category_df = create_category_df(df, category, f"{category}_retrieval", f"{category}_generation")
                            
                            if category_df.empty:
                                gr.Markdown(f"No data available for {category_display_names.get(category, category)} category.")
                                category_tables[category] = gr.DataFrame()
                            else:
                                gr.Markdown(f"#### Performance on {category_display_names.get(category, category)}")
                                category_tables[category] = gr.DataFrame(
                                    value=category_df,
                                    headers=category_df.columns.tolist(),
                                    datatype=["str"] * len(category_df.columns),
                                    row_count=(min(10, len(category_df)) if not category_df.empty else 0),
                                    col_count=(len(category_df.columns) if not category_df.empty else 0),
                                    interactive=False,
                                    wrap=True
                                )
    
    # Version selector and Citation block in a flex container
    with gr.Row():
        # Citation block (left side)
        with gr.Column(scale=1, elem_classes=["citation-block"]):
            gr.Markdown("### Цитирование")
            gr.Markdown("""

            ```

            @article{dynamic-rag-benchmark,

              title={Dynamic RAG Benchmark},

              author={RAG Benchmark Team},

              journal={arXiv preprint},

              year={2024},

              url={https://github.com/rag-benchmark}

            }

            ```

            

            Шаблон для цитирования нашего бенча.

            """)
        
        # Version selector (right side)
        with gr.Column(scale=1, elem_classes=["version-selector"]):
            gr.Markdown("### Выбор версий")
            with gr.Column():
                with gr.Row():
                    with gr.Column(scale=3):
                        only_actual_versions = gr.Checkbox(
                            label="Только актуальные версии", 
                            value=True,
                            info="Считать, начиная с актуальной версии датасета"
                        ) 
                    with gr.Column(scale=5):
                        n_versions_slider = gr.Slider(
                            minimum=1, 
                            maximum=5, 
                            value=1, 
                            step=1, 
                            label="Взять n последних версий",
                            info="Количество версий для подсчета метрик"
                        )
                with gr.Row():
                    filter_btn = gr.Button("Применить фильтр", variant="primary")
                
                gr.Markdown(
                    "Кликайте на модели в таблице, чтобы добавить их в графики", 
                    elem_classes=["info-text"]
                )
    
    # Footer
    with gr.Row():
        gr.Markdown("""

        <footer>Dynamic RAG Benchmark Leaderboard</footer>

        """)
    
    # Handle row selection for radar charts
    def update_charts(evt: gr.SelectData, selected_models):
        try:
            # Get current data with the latest filters
            current_df, current_ret_metrics, current_gen_metrics, _ = filter_and_process_results(
                results, n_versions=n_versions_slider.value, only_actual_versions=only_actual_versions.value
            )
            
            # Debug info
            print(f"Selection event: {evt}, type: {type(evt)}")
            
            selected_model = None
            
            # Extract the selected model based on the row index
            try:
                # Get the table component that was clicked
                component = evt.target
                
                # Get the row index
                row_idx = evt.index[0] if isinstance(evt.index, list) else evt.index
                print(f"Row index: {row_idx}")
                
                # Determine what type of data we're dealing with and extract model name
                # First check if it's a summary table
                if component is metrics_table:
                    # Summary table was clicked
                    if isinstance(summary_df, pd.DataFrame) and 0 <= row_idx < len(summary_df):
                        selected_model = summary_df.iloc[row_idx]['Model']
                    print(f"Selected from summary table: {selected_model}")
                else:
                    # Check if it's a category table
                    for category, table in category_tables.items():
                        if component is table:
                            # Get the category dataframe
                            category_df = create_category_df(
                                current_df, 
                                category, 
                                f"{category}_retrieval", 
                                f"{category}_generation"
                            )
                            
                            if isinstance(category_df, pd.DataFrame) and 0 <= row_idx < len(category_df):
                                selected_model = category_df.iloc[row_idx]['Model']
                            print(f"Selected from {category} table: {selected_model}")
                            break
                
                # If we still couldn't identify the model, try to get it from the raw data
                if selected_model is None and hasattr(component, "value"):
                    table_value = component.value
                    if isinstance(table_value, pd.DataFrame) and 0 <= row_idx < len(table_value):
                        selected_model = table_value.iloc[row_idx]['Model']
                    elif isinstance(table_value, list) and 0 <= row_idx < len(table_value):
                        selected_model = table_value[row_idx][0]  # Assuming Model is the first column
                    elif isinstance(table_value, dict) and 'data' in table_value and 0 <= row_idx < len(table_value['data']):
                        selected_model = table_value['data'][row_idx][0]
            except Exception as e:
                print(f"Error extracting model name: {e}")
                traceback.print_exc()
            
            # If we found a model name, toggle its selection
            if selected_model:
                print(f"Selected model: {selected_model}")
                
                # Make sure the model exists in the current dataframe
                available_models = current_df['Model'].tolist() if not current_df.empty else []
                
                if selected_model in available_models:
                    # Add to list if not already there, otherwise remove (toggle selection)
                    if selected_model in selected_models:
                        selected_models.remove(selected_model)
                    else:
                        selected_models.append(selected_model)
                else:
                    print(f"Model {selected_model} not found in current dataframe")
            
            # Ensure only models from the current dataframe are included
            available_models = current_df['Model'].tolist() if not current_df.empty else []
            selected_models = [model for model in selected_models if model in available_models]
            
            # If no models are selected after filtering, use the first available model
            if not selected_models and available_models:
                selected_models = [available_models[0]]
            
            # Create radar charts using the current dataframe and metrics
            gen_chart = create_radar_chart(current_df, selected_models, current_gen_metrics, "Performance on Generation Tasks")
            ret_chart = create_radar_chart(current_df, selected_models, current_ret_metrics, "Performance on Retrieval Tasks")
            
            return selected_models, gen_chart, ret_chart
        except Exception as e:
            print(f"Error in update_charts: {e}")
            print(traceback.format_exc())
            return selected_models, generation_chart.value, retrieval_chart.value
    
    # Use custom event handler for row selection
    metrics_table.select(
        fn=update_charts,
        inputs=[selected_models],
        outputs=[selected_models, generation_chart, retrieval_chart]
    )
    
    # Add selection handlers for category tables too
    for category_table in category_tables.values():
        category_table.select(
            fn=update_charts,
            inputs=[selected_models],
            outputs=[selected_models, generation_chart, retrieval_chart]
        )
    
    # Handle version filter changes
    def update_data(n_versions, only_actual, current_selected_models):
        try:
            # Get updated data
            new_df, new_ret_metrics, new_gen_metrics, new_category_metrics = filter_and_process_results(
                results, n_versions=n_versions, only_actual_versions=only_actual
            )
            
            # Get available models
            available_models = new_df['Model'].tolist() if not new_df.empty else []
            
            # Filter selected models to only include those that exist in the new dataset
            filtered_selected_models = [model for model in current_selected_models if model in available_models]
            
            # If no previously selected models remain, select the top models
            if not filtered_selected_models and available_models:
                filtered_selected_models = available_models[:min(5, len(available_models))]
            
            # Create radar charts
            gen_chart = create_radar_chart(new_df, filtered_selected_models, new_gen_metrics, "Performance on Generation Tasks")
            ret_chart = create_radar_chart(new_df, filtered_selected_models, new_ret_metrics, "Performance on Retrieval Tasks")
            
            # Create summary dataframe
            summary_df = create_summary_df(new_df, new_ret_metrics, new_gen_metrics)
            
            # Create category tables dictionary for output
            category_tables_output = {}
            
            # First initialize all tables to empty DataFrame
            for category in category_tables.keys():
                category_tables_output[category] = pd.DataFrame()
            
            # Then populate available tables
            for category, _ in new_category_metrics:
                if f"{category}_retrieval" in new_df.columns and f"{category}_generation" in new_df.columns:
                    category_df = create_category_df(new_df, category, f"{category}_retrieval", f"{category}_generation")
                    if category in category_tables:
                        category_tables_output[category] = category_df if not category_df.empty else pd.DataFrame()
            
            # Prepare all outputs
            outputs = [summary_df, gen_chart, ret_chart, filtered_selected_models]
            
            # Add category tables to outputs in the same order as in category_tables
            for category in category_tables.keys():
                outputs.append(category_tables_output.get(category, pd.DataFrame()))
            
            # Update global df for later use
            global df, retrieval_metrics, generation_metrics
            df = new_df
            retrieval_metrics = new_ret_metrics
            generation_metrics = new_gen_metrics
            
            return outputs
        except Exception as e:
            print(f"Error in update_data: {e}")
            print(traceback.format_exc())
            # Return original values in case of error
            empty_tables = [pd.DataFrame() for _ in category_tables]
            return summary_df, generation_chart.value, retrieval_chart.value, current_selected_models, *empty_tables
    
    # Define filter button outputs
    filter_outputs = [metrics_table, generation_chart, retrieval_chart, selected_models]
    # Add category tables to outputs
    for category_table in category_tables.values():
        filter_outputs.append(category_table)
    
    filter_btn.click(
        fn=update_data,
        inputs=[n_versions_slider, only_actual_versions, selected_models],
        outputs=filter_outputs
    )
    
    # Function to clear charts
    def clear_charts():
        empty_models = []
        # Create empty charts
        empty_gen_chart = create_radar_chart(df, empty_models, generation_metrics, "Performance on Generation Tasks")
        empty_ret_chart = create_radar_chart(df, empty_models, retrieval_metrics, "Performance on Retrieval Tasks")
        return empty_models, empty_gen_chart, empty_ret_chart
    
    # Connect clear charts button
    clear_charts_btn.click(
        fn=clear_charts,
        inputs=[],
        outputs=[selected_models, generation_chart, retrieval_chart]
    )

if __name__ == "__main__":
    demo.launch()