Spaces:
Running
Running
Update leaderboard display
Browse files
app.py
CHANGED
@@ -54,12 +54,14 @@ LANGUAGES = {"English": {
|
|
54 |
"citation_title": "### Citation",
|
55 |
"citation_description": """
|
56 |
```
|
57 |
-
@
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
}
|
64 |
```
|
65 |
|
@@ -346,14 +348,16 @@ def create_summary_df(df, retrieval_metrics, generation_metrics):
|
|
346 |
summary_df['Generation (avg)'] = generation_avg
|
347 |
|
348 |
# Add total score if all three columns exist
|
349 |
-
if 'Retrieval (avg)' in summary_df.columns and 'Generation (avg)' in summary_df.columns
|
350 |
-
|
|
|
|
|
351 |
summary_df = summary_df.sort_values('Total Score', ascending=False)
|
352 |
|
353 |
# Select columns for display
|
354 |
-
summary_cols = ['Model', 'Embeddings', 'Top
|
355 |
-
if 'Judge' in summary_df.columns:
|
356 |
-
|
357 |
if 'Retrieval (avg)' in summary_df.columns:
|
358 |
summary_cols.append('Retrieval (avg)')
|
359 |
if 'Generation (avg)' in summary_df.columns:
|
|
|
54 |
"citation_title": "### Citation",
|
55 |
"citation_description": """
|
56 |
```
|
57 |
+
@misc{chernogorskii2025dragondynamicragbenchmark,
|
58 |
+
title={DRAGON: Dynamic RAG Benchmark On News},
|
59 |
+
author={Fedor Chernogorskii and Sergei Averkiev and Liliya Kudraleeva and Zaven Martirosian and Maria Tikhonova and Valentin Malykh and Alena Fenogenova},
|
60 |
+
year={2025},
|
61 |
+
eprint={2507.05713},
|
62 |
+
archivePrefix={arXiv},
|
63 |
+
primaryClass={cs.CL},
|
64 |
+
url={https://arxiv.org/abs/2507.05713},
|
65 |
}
|
66 |
```
|
67 |
|
|
|
348 |
summary_df['Generation (avg)'] = generation_avg
|
349 |
|
350 |
# Add total score if all three columns exist
|
351 |
+
if 'Retrieval (avg)' in summary_df.columns and 'Generation (avg)' in summary_df.columns:
|
352 |
+
# if 'Retrieval (avg)' in summary_df.columns and 'Generation (avg)' in summary_df.columns and 'Judge' in summary_df.columns:
|
353 |
+
# summary_df['Total Score'] = summary_df[['Retrieval (avg)', 'Generation (avg)', 'Judge']].mean(axis=1).round(4)
|
354 |
+
summary_df['Total Score'] = summary_df[['Retrieval (avg)', 'Generation (avg)']].mean(axis=1).round(4)
|
355 |
summary_df = summary_df.sort_values('Total Score', ascending=False)
|
356 |
|
357 |
# Select columns for display
|
358 |
+
summary_cols = ['Model', 'Embeddings', 'Top k']
|
359 |
+
# if 'Judge' in summary_df.columns:
|
360 |
+
# summary_cols.append('Judge')
|
361 |
if 'Retrieval (avg)' in summary_df.columns:
|
362 |
summary_cols.append('Retrieval (avg)')
|
363 |
if 'Generation (avg)' in summary_df.columns:
|