AshwinSankar's picture
Update app.py
88a0070 verified
raw
history blame
9.13 kB
import os
import torch
import spaces
from collections.abc import Iterator
from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = 4096
HF_TOKEN = os.environ['HF_TOKEN']
DESCRIPTION = """\
## 🌏 IndicTrans3-beta πŸš€: Multilingual Translation for 22 Indic Languages
IndicTrans3 is the latest state-of-the-art (SOTA) translation model from AI4Bharat, designed to handle translations across **22 Indic languages** with high accuracy. It supports **document-level machine translation (MT)** and is built to match the performance of other leading SOTA models.
πŸ“’ **Training data will be released soon!**
### πŸ”Ή Features
βœ… Supports **22 Indic languages**
βœ… Enables **document-level translation**
βœ… Achieves **SOTA performance** in Indic MT
βœ… Optimized for **real-world applications**
### πŸš€ Try It Out!
1️⃣ Enter text in any supported language
2️⃣ Select the target language
3️⃣ Click **Translate** and get high-quality results!
Built for **linguistic diversity and accessibility**, IndicTrans3 is a major step forward in **Indic language AI**.
πŸ’‘ **Source:** AI4Bharat | Powered by Hugging Face
"""
# if not torch.cuda.is_available():
# DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"
# if torch.cuda.is_available():
model_id = "ai4bharat/IndicTrans3-beta"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", offload_folder="offload", token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
LANGUAGES = {
"Hindi": "hin_Deva",
"Bengali": "ben_Beng",
"Telugu": "tel_Telu",
"Marathi": "mar_Deva",
"Tamil": "tam_Taml",
"Urdu": "urd_Arab",
"Gujarati": "guj_Gujr",
"Kannada": "kan_Knda",
"Odia": "ori_Orya",
"Malayalam": "mal_Mlym",
"Punjabi": "pan_Guru",
"Assamese": "asm_Beng",
"Maithili": "mai_Mith",
"Santali": "sat_Olck",
"Kashmiri": "kas_Arab",
"Nepali": "nep_Deva",
"Sindhi": "snd_Arab",
"Konkani": "kok_Deva",
"Dogri": "dgo_Deva",
"Manipuri": "mni_Beng",
"Bodo": "brx_Deva"
}
@spaces.GPU
def generate_for_examples(
tgt_lang: str,
message: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> str:
conversation = []
conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
input_ids = input_ids.to(model.device)
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
return tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True)
@spaces.GPU
def generate(
tgt_lang: str,
message: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=180.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def store_feedback(rating, feedback_text):
if not rating:
gr.Warning("Please select a rating before submitting feedback.", duration=5)
return None
if not feedback_text or feedback_text.strip() == "":
gr.Warning("Please provide some feedback before submitting.", duration=5)
return None
gr.Info("Feedback submitted successfully!")
return "Thank you for your feedback!"
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#header {text-align: center;}
.message { font-size: 1.2em; }
#feedback-section { margin-top: 30px; border-top: 1px solid #ddd; padding-top: 20px; }
"""
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
gr.Markdown(DESCRIPTION, elem_id="header")
gr.Markdown("Translate text between multiple Indic languages using the latest IndicTrans3 model from AI4Bharat. This model is trained on the --- dataset and supports translation to 22 Indic languages. Setting a state-of-the-art benchmark on multiple translation tasks, IndicTrans3 is a powerful model that can handle complex translation tasks with ease.", elem_id="description")
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
placeholder="Enter text to translate...",
label="Input text",
lines=10,
max_lines=100,
elem_id="input-text"
)
with gr.Column():
tgt_lang = gr.Dropdown(
list(LANGUAGES.keys()),
value="Hindi",
label="Translate To",
elem_id="translate-to"
)
text_output = gr.Textbox(
label="",
lines=10,
max_lines=100,
elem_id="output-text"
)
btn_submit = gr.Button("Translate")
btn_submit.click(
fn=generate,
inputs=[
tgt_lang,
text_input,
gr.Number(value=4096, visible=False),
gr.Number(value=0.1, visible=False),
gr.Number(value=0.9, visible=False),
gr.Number(value=50, visible=False),
gr.Number(value=1.0, visible=False)
],
outputs=text_output
)
gr.Examples(
examples=[
["Telugu", "Hello, how are you today? I hope you're doing well."],
["Punjabi", "Hello, how are you today? I hope you're doing well."],
["Hindi", "Hello, how are you today? I hope you're doing well."],
["Marathi", "Hello, how are you today? I hope you're doing well."],
["Malayalam", "Hello, how are you today? I hope you're doing well."]
],
inputs=[
tgt_lang,
text_input,
gr.Number(value=4096, visible=False),
gr.Number(value=0.1, visible=False),
gr.Number(value=0.9, visible=False),
gr.Number(value=50, visible=False),
gr.Number(value=1.0, visible=False)
],
outputs=text_output,
fn=generate_for_examples,
cache_examples=True,
examples_per_page=5
)
with gr.Column(elem_id="feedback-section"):
gr.Markdown("## Rate Translation & Provide Feedback πŸ“")
gr.Markdown("Help us improve the translation quality by providing your feedback and rating.")
with gr.Row():
rating = gr.Radio(
["1", "2", "3", "4", "5"],
label="Translation Rating (1-5)"
)
feedback_text = gr.Textbox(
placeholder="Share your feedback about the translation...",
label="Feedback",
lines=3
)
feedback_submit = gr.Button("Submit Feedback")
feedback_result = gr.Textbox(label="", visible=False)
feedback_submit.click(
fn=store_feedback,
inputs=[rating, feedback_text],
outputs=feedback_result
)
demo.launch()