import torch import spaces from collections.abc import Iterator from threading import Thread import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = 4096 DESCRIPTION = """\ # IndicTrans3-beta 🚀 """ # if not torch.cuda.is_available(): # DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" # if torch.cuda.is_available(): model_id = "ai4bharat/IndicTrans3-beta" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", offload_folder="offload") tokenizer = AutoTokenizer.from_pretrained(model_id) LANGUAGES = { "Hindi": "hin_Deva", "Bengali": "ben_Beng", "Telugu": "tel_Telu", "Marathi": "mar_Deva", "Tamil": "tam_Taml", "Urdu": "urd_Arab", "Gujarati": "guj_Gujr", "Kannada": "kan_Knda", "Odia": "ori_Orya", "Malayalam": "mal_Mlym", "Punjabi": "pan_Guru", "Assamese": "asm_Beng", "Maithili": "mai_Mith", "Santali": "sat_Olck", "Kashmiri": "kas_Arab", "Nepali": "nep_Deva", "Sindhi": "snd_Arab", "Konkani": "kok_Deva", "Dogri": "dgo_Deva", "Manipuri": "mni_Beng", "Bodo": "brx_Deva" } @spaces.GPU def generate( tgt_lang: str, message: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) def store_feedback(rating, feedback_text): if not rating: gr.Warning("Please select a rating before submitting feedback.", duration=5) return None if not feedback_text or feedback_text.strip() == "": gr.Warning("Please provide some feedback before submitting.", duration=5) return None gr.Info("Feedback submitted successfully!") return "Thank you for your feedback!" css = """ #col-container {max-width: 80%; margin-left: auto; margin-right: auto;} #header {text-align: center;} .message { font-size: 1.2em; } #feedback-section { margin-top: 30px; border-top: 1px solid #ddd; padding-top: 20px; } """ with gr.Blocks(theme=gr.themes.Default(), css=css) as demo: gr.Markdown(DESCRIPTION, elem_id="header") gr.Markdown("Translate text between multiple Indic languages using the latest IndicTrans3 model from AI4Bharat. This model is trained on the --- dataset and supports translation to 22 Indic languages. Setting a state-of-the-art benchmark on multiple translation tasks, IndicTrans3 is a powerful model that can handle complex translation tasks with ease.", elem_id="description") with gr.Column(elem_id="col-container"): with gr.Row(): with gr.Column(): text_input = gr.Textbox( placeholder="Enter text to translate...", label="Input text", lines=10, max_lines=100, elem_id="input-text" ) with gr.Column(): tgt_lang = gr.Dropdown( list(LANGUAGES.keys()), value="Hindi", label="Translate To", elem_id="translate-to" ) text_output = gr.Textbox( label="", lines=10, max_lines=100, elem_id="output-text" ) btn_submit = gr.Button("Translate") btn_submit.click( fn=generate, inputs=[ tgt_lang, text_input, gr.Number(value=4096, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0.9, visible=False), gr.Number(value=50, visible=False), gr.Number(value=0.1, visible=False) ], outputs=text_output ) gr.Examples( examples=[ ["Telugu", "Hello, how are you today? I hope you're doing well."], ["Punjabi", "Hello, how are you today? I hope you're doing well."], ["Hindi", "Hello, how are you today? I hope you're doing well."], ["Marathi", "Hello, how are you today? I hope you're doing well."], ["Malayalam", "Hello, how are you today? I hope you're doing well."] ], inputs=[ tgt_lang, text_input ], outputs=text_output, fn=generate, cache_examples=True, examples_per_page=5 ) with gr.Column(elem_id="feedback-section"): gr.Markdown("## Rate Translation & Provide Feedback 📝") gr.Markdown("Help us improve the translation quality by providing your feedback and rating.") with gr.Row(): rating = gr.Radio( ["1", "2", "3", "4", "5"], label="Translation Rating (1-5)" ) feedback_text = gr.Textbox( placeholder="Share your feedback about the translation...", label="Feedback", lines=3 ) feedback_submit = gr.Button("Submit Feedback") feedback_result = gr.Textbox(label="", visible=False) feedback_submit.click( fn=store_feedback, inputs=[rating, feedback_text], outputs=feedback_result ) demo.launch()