Spaces:
Sleeping
Sleeping
File size: 10,877 Bytes
1376fd4 b195a06 1376fd4 1ba6579 1376fd4 1ba6579 1376fd4 1ba6579 1376fd4 1ba6579 1376fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import boto3
import os
import json
import re
import gradio as gr
from typing import List, Dict, Tuple, Optional, Union, Any
# โโ S3 CONFIG โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
s3 = boto3.client(
"s3",
aws_access_key_id = os.getenv("AWS_ACCESS_KEY_ID"),
aws_secret_access_key = os.getenv("AWS_SECRET_ACCESS_KEY"),
region_name = os.getenv("AWS_DEFAULT_REGION", "ap-southeast-2"),
)
# ai4data/datause-annotation
# S3 bucket and keys
BUCKET = "doccano-processed"
#INIT_KEY = "gradio/initial_data_train.json"
INIT_KEY = "gradio/refugee_train_initial_data_v2.json"
#VALID_PREFIX = "validated_records/"
VALID_PREFIX = "refugee_train_validated/"
# โโ Helpers to load & save from S3 โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def load_initial_data() -> List[Dict]:
obj = s3.get_object(Bucket=BUCKET, Key=INIT_KEY)
return json.loads(obj['Body'].read())
def load_all_validations() -> Dict[int, Dict]:
records = {}
pages = s3.get_paginator("list_objects_v2").paginate(
Bucket=BUCKET, Prefix=VALID_PREFIX
)
for page in pages:
for obj in page.get("Contents", []):
key = obj["Key"]
idx = int(os.path.splitext(os.path.basename(key))[0])
data = s3.get_object(Bucket=BUCKET, Key=key)["Body"].read()
records[idx] = json.loads(data)
return records
def save_single_validation(idx: int, record: Dict):
key = f"{VALID_PREFIX}{idx}.json"
s3.put_object(
Bucket = BUCKET,
Key = key,
Body = json.dumps(record, indent=2).encode('utf-8'),
ContentType = 'application/json'
)
class DynamicDataset:
def __init__(self, data: List[Dict]):
self.data = data
self.len = len(data)
self.current = 0
for ex in self.data:
ex.setdefault("validated", False)
def example(self, idx: int) -> Dict:
self.current = max(0, min(self.len - 1, idx))
return self.data[self.current]
def next(self) -> Dict:
if self.current < self.len - 1:
self.current += 1
return self.data[self.current]
def prev(self) -> Dict:
if self.current > 0:
self.current -= 1
return self.data[self.current]
def jump_next_unvalidated(self) -> Dict:
for i in range(self.current + 1, self.len):
if not self.data[i]["validated"]:
self.current = i
break
return self.data[self.current]
def jump_prev_unvalidated(self) -> Dict:
for i in range(self.current - 1, -1, -1):
if not self.data[i]["validated"]:
self.current = i
break
return self.data[self.current]
def validate(self):
self.data[self.current]["validated"] = True
def tokenize_text(text: str) -> List[str]:
return re.findall(r"\w+(?:[-_]\w+)*|[^\s\w]", text)
def prepare_for_highlight(data: Dict) -> List[Tuple[str, Optional[str]]]:
tokens = data["tokenized_text"]
ner = data["ner"]
highlighted, curr_ent, ent_buf, norm_buf = [], None, [], []
for idx, tok in enumerate(tokens):
if curr_ent is None or idx > curr_ent[1]:
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
ent_buf = []
curr_ent = next((e for e in ner if e[0] == idx), None)
if curr_ent and curr_ent[0] <= idx <= curr_ent[1]:
if norm_buf:
highlighted.append((" ".join(norm_buf), None))
norm_buf = []
ent_buf.append(tok)
else:
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
ent_buf = []
norm_buf.append(tok)
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
if norm_buf:
highlighted.append((" ".join(norm_buf), None))
return [(re.sub(r"\s(?=[,\.!?โฆ:;])", "", txt), lbl) for txt, lbl in highlighted]
def extract_tokens_and_labels(highlighted: List[Dict[str, Union[str, None]]]
) -> Tuple[List[str], List[Tuple[int,int,str]]]:
tokens, ner = [], []
token_idx = 0
for entry in highlighted:
text = entry['token']
label = entry.get('class_or_confidence') or entry.get('class') or entry.get('label')
# split into real tokens
toks = tokenize_text(text)
start = token_idx
end = token_idx + len(toks) - 1
tokens.extend(toks)
if label:
ner.append((start, end, label))
token_idx = end + 1
return tokens, ner
# โโ App factory โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def create_demo() -> gr.Blocks:
data = load_initial_data()
validated_store = load_all_validations()
for idx in validated_store:
if 0 <= idx < len(data):
data[idx]["validated"] = True
dynamic_dataset = DynamicDataset(data)
with gr.Blocks() as demo:
prog = gr.Slider(0, dynamic_dataset.len-1, value=0, step=1, label="Example #", interactive=False)
inp_box = gr.HighlightedText(label="Sentence", interactive=True)
status = gr.Checkbox(label="Validated?", value=False, interactive=False)
filename_disp = gr.Markdown(label="Filename") # NEW: shows current filename
page_disp = gr.Markdown(label="Page") # NEW: shows current page number
gr.Markdown(
"[๐ Entity Tag Guide](https://huggingface.co/spaces/rafmacalaba/datause-annotation/blob/main/guidelines.md)"
)
with gr.Row():
prev_btn = gr.Button("โ๏ธ Previous")
apply_btn = gr.Button("๐ Apply Changes")
next_btn = gr.Button("Next โถ๏ธ")
with gr.Row():
skip_prev = gr.Button("โฎ๏ธ Prev Unvalidated")
validate_btn = gr.Button("โ
Validate")
skip_next = gr.Button("โญ๏ธ Next Unvalidated")
# def load_example(idx):
# rec = validated_store.get(idx, dynamic_dataset.example(idx))
# segs = prepare_for_highlight(rec)
# return segs, rec.get("validated", False), idx
def load_example(idx):
rec = validated_store.get(idx, dynamic_dataset.example(idx))
segs = prepare_for_highlight(rec)
return (
segs,
rec.get("validated", False),
idx,
rec.get("filename", ""), # <-- returns filename for filename_disp
f"Page {rec.get('page', '')}" # <-- returns page for page_disp
)
def update_example(highlighted, idx: int):
# grab the record
rec = dynamic_dataset.data[idx]
# reโtokenize from the raw text (same as do_validate)
orig_tokens = tokenize_text(rec["text"])
# realign the user's highlights back to those tokens
new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# overwrite both token list and span list (and mark unโvalidated)
rec["tokenized_text"] = orig_tokens
rec["ner"] = new_ner
rec["validated"] = False
# reโrender
return prepare_for_highlight(rec)
def align_spans_to_tokens(
highlighted: List[Dict[str, Union[str, None]]],
tokens: List[str]
) -> List[Tuple[int,int,str]]:
"""
Align each highlighted chunk to the next matching tokens in the list,
advancing a pointer so repeated tokens map in the order you clicked them.
"""
spans = []
search_start = 0
for entry in highlighted:
text = entry["token"]
label = entry.get("class_or_confidence") or entry.get("label") or entry.get("class")
if not label:
continue
chunk_toks = tokenize_text(text)
# scan only from the end of the last match
for i in range(search_start, len(tokens) - len(chunk_toks) + 1):
if tokens[i:i+len(chunk_toks)] == chunk_toks:
spans.append((i, i + len(chunk_toks) - 1, label))
search_start = i + len(chunk_toks)
break
else:
print(f"โ ๏ธ Couldnโt align chunk: {text!r}")
return spans
def do_validate(highlighted, idx: int):
# mark validated in memory
dynamic_dataset.validate()
# grab the record
rec = dynamic_dataset.data[idx]
# re-tokenize from the original text
orig_tokens = tokenize_text(rec["text"])
# realign the user's highlighted segments to those tokens
new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# overwrite both token list and span list
rec["tokenized_text"] = orig_tokens
rec["ner"] = new_ner
# persist
save_single_validation(idx, rec)
# re-render and show checkbox checked
return prepare_for_highlight(rec), True
def nav(fn):
rec = fn()
segs = prepare_for_highlight(rec)
return segs, rec.get("validated", False), dynamic_dataset.current
demo.load(load_example, inputs=prog, outputs=[inp_box, status, prog])
apply_btn.click(
fn=update_example,
inputs=[inp_box, prog], # pass both the highlights *and* the example idx
outputs=inp_box
)
#apply_btn.click(update_spans, inputs=inp_box, outputs=inp_box)
prev_btn.click(lambda: nav(dynamic_dataset.prev), inputs=None, outputs=[inp_box, status, prog])
validate_btn.click(do_validate, inputs=[inp_box, prog], outputs=[inp_box, status])
next_btn.click(lambda: nav(dynamic_dataset.next), inputs=None, outputs=[inp_box, status, prog])
skip_prev.click(lambda: nav(dynamic_dataset.jump_prev_unvalidated), inputs=None, outputs=[inp_box, status, prog])
skip_next.click(lambda: nav(dynamic_dataset.jump_next_unvalidated), inputs=None, outputs=[inp_box, status, prog])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True, inline=True, debug=True) |