Spaces:
Running
Running
File size: 15,883 Bytes
1376fd4 b195a06 1376fd4 1ba6579 1376fd4 81c36f4 1376fd4 81c36f4 1376fd4 81c36f4 1376fd4 81c36f4 1376fd4 81c36f4 f8fcf26 81c36f4 1376fd4 81c36f4 1376fd4 81c36f4 1376fd4 81c36f4 1376fd4 81c36f4 1376fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import boto3
import os
import json
import re
import gradio as gr
from typing import List, Dict, Tuple, Optional, Union, Any
# โโ S3 CONFIG โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
s3 = boto3.client(
"s3",
aws_access_key_id = os.getenv("AWS_ACCESS_KEY_ID"),
aws_secret_access_key = os.getenv("AWS_SECRET_ACCESS_KEY"),
region_name = os.getenv("AWS_DEFAULT_REGION", "ap-southeast-2"),
)
# ai4data/datause-annotation
# S3 bucket and keys
BUCKET = "doccano-processed"
#INIT_KEY = "gradio/initial_data_train.json"
INIT_KEY = "gradio/refugee_train_initial_data_v2.json"
#VALID_PREFIX = "validated_records/"
VALID_PREFIX = "refugee_train_validated/"
# โโ Helpers to load & save from S3 โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def load_initial_data() -> List[Dict]:
obj = s3.get_object(Bucket=BUCKET, Key=INIT_KEY)
return json.loads(obj['Body'].read())
def load_all_validations() -> Dict[int, Dict]:
records = {}
pages = s3.get_paginator("list_objects_v2").paginate(
Bucket=BUCKET, Prefix=VALID_PREFIX
)
for page in pages:
for obj in page.get("Contents", []):
key = obj["Key"]
idx = int(os.path.splitext(os.path.basename(key))[0])
data = s3.get_object(Bucket=BUCKET, Key=key)["Body"].read()
records[idx] = json.loads(data)
return records
def save_single_validation(idx: int, record: Dict):
key = f"{VALID_PREFIX}{idx}.json"
s3.put_object(
Bucket = BUCKET,
Key = key,
Body = json.dumps(record, indent=2).encode('utf-8'),
ContentType = 'application/json'
)
class DynamicDataset:
def __init__(self, data: List[Dict]):
self.data = data
self.len = len(data)
self.current = 0
for ex in self.data:
ex.setdefault("validated", False)
def example(self, idx: int) -> Dict:
self.current = max(0, min(self.len - 1, idx))
return self.data[self.current]
def next(self) -> Dict:
if self.current < self.len - 1:
self.current += 1
return self.data[self.current]
def prev(self) -> Dict:
if self.current > 0:
self.current -= 1
return self.data[self.current]
def jump_next_unvalidated(self) -> Dict:
for i in range(self.current + 1, self.len):
if not self.data[i]["validated"]:
self.current = i
break
return self.data[self.current]
def jump_prev_unvalidated(self) -> Dict:
for i in range(self.current - 1, -1, -1):
if not self.data[i]["validated"]:
self.current = i
break
return self.data[self.current]
def validate(self):
self.data[self.current]["validated"] = True
def tokenize_text(text: str) -> List[str]:
return re.findall(r"\w+(?:[-_]\w+)*|[^\s\w]", text)
def prepare_for_highlight(data: Dict) -> List[Tuple[str, Optional[str]]]:
tokens = data["tokenized_text"]
ner = data["ner"]
highlighted, curr_ent, ent_buf, norm_buf = [], None, [], []
for idx, tok in enumerate(tokens):
if curr_ent is None or idx > curr_ent[1]:
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
ent_buf = []
curr_ent = next((e for e in ner if e[0] == idx), None)
if curr_ent and curr_ent[0] <= idx <= curr_ent[1]:
if norm_buf:
highlighted.append((" ".join(norm_buf), None))
norm_buf = []
ent_buf.append(tok)
else:
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
ent_buf = []
norm_buf.append(tok)
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
if norm_buf:
highlighted.append((" ".join(norm_buf), None))
return [(re.sub(r"\s(?=[,\.!?โฆ:;])", "", txt), lbl) for txt, lbl in highlighted]
def extract_tokens_and_labels(highlighted: List[Dict[str, Union[str, None]]]
) -> Tuple[List[str], List[Tuple[int,int,str]]]:
tokens, ner = [], []
token_idx = 0
for entry in highlighted:
text = entry['token']
label = entry.get('class_or_confidence') or entry.get('class') or entry.get('label')
# split into real tokens
toks = tokenize_text(text)
start = token_idx
end = token_idx + len(toks) - 1
tokens.extend(toks)
if label:
ner.append((start, end, label))
token_idx = end + 1
return tokens, ner
# โโ App factory โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# def create_demo() -> gr.Blocks:
# data = load_initial_data()
# validated_store = load_all_validations()
# for idx in validated_store:
# if 0 <= idx < len(data):
# data[idx]["validated"] = True
# dynamic_dataset = DynamicDataset(data)
# with gr.Blocks() as demo:
# prog = gr.Slider(0, dynamic_dataset.len-1, value=0, step=1, label="Example #", interactive=False)
# inp_box = gr.HighlightedText(label="Sentence", interactive=True)
# status = gr.Checkbox(label="Validated?", value=False, interactive=False)
# filename_disp = gr.Markdown(label="Filename") # NEW: shows current filename
# page_disp = gr.Markdown(label="Page") # NEW: shows current page number
# gr.Markdown(
# "[๐ Entity Tag Guide](https://huggingface.co/spaces/rafmacalaba/datause-annotation/blob/main/guidelines.md)"
# )
# with gr.Row():
# prev_btn = gr.Button("โ๏ธ Previous")
# apply_btn = gr.Button("๐ Apply Changes")
# next_btn = gr.Button("Next โถ๏ธ")
# with gr.Row():
# skip_prev = gr.Button("โฎ๏ธ Prev Unvalidated")
# validate_btn = gr.Button("โ
Validate")
# skip_next = gr.Button("โญ๏ธ Next Unvalidated")
# # def load_example(idx):
# # rec = validated_store.get(idx, dynamic_dataset.example(idx))
# # segs = prepare_for_highlight(rec)
# # return segs, rec.get("validated", False), idx
# def load_example(idx):
# rec = validated_store.get(idx, dynamic_dataset.example(idx))
# segs = prepare_for_highlight(rec)
# return (
# segs,
# rec.get("validated", False),
# idx,
# rec.get("filename", ""), # <-- returns filename for filename_disp
# f"Page {rec.get('page', '')}" # <-- returns page for page_disp
# )
# def update_example(highlighted, idx: int):
# # grab the record
# rec = dynamic_dataset.data[idx]
# # reโtokenize from the raw text (same as do_validate)
# orig_tokens = tokenize_text(rec["text"])
# # realign the user's highlights back to those tokens
# new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# # overwrite both token list and span list (and mark unโvalidated)
# rec["tokenized_text"] = orig_tokens
# rec["ner"] = new_ner
# rec["validated"] = False
# # reโrender
# return prepare_for_highlight(rec)
# def align_spans_to_tokens(
# highlighted: List[Dict[str, Union[str, None]]],
# tokens: List[str]
# ) -> List[Tuple[int,int,str]]:
# """
# Align each highlighted chunk to the next matching tokens in the list,
# advancing a pointer so repeated tokens map in the order you clicked them.
# """
# spans = []
# search_start = 0
# for entry in highlighted:
# text = entry["token"]
# label = entry.get("class_or_confidence") or entry.get("label") or entry.get("class")
# if not label:
# continue
# chunk_toks = tokenize_text(text)
# # scan only from the end of the last match
# for i in range(search_start, len(tokens) - len(chunk_toks) + 1):
# if tokens[i:i+len(chunk_toks)] == chunk_toks:
# spans.append((i, i + len(chunk_toks) - 1, label))
# search_start = i + len(chunk_toks)
# break
# else:
# print(f"โ ๏ธ Couldnโt align chunk: {text!r}")
# return spans
# def do_validate(highlighted, idx: int):
# # mark validated in memory
# dynamic_dataset.validate()
# # grab the record
# rec = dynamic_dataset.data[idx]
# # re-tokenize from the original text
# orig_tokens = tokenize_text(rec["text"])
# # realign the user's highlighted segments to those tokens
# new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# # overwrite both token list and span list
# rec["tokenized_text"] = orig_tokens
# rec["ner"] = new_ner
# # persist
# save_single_validation(idx, rec)
# # re-render and show checkbox checked
# return prepare_for_highlight(rec), True
# def nav(fn):
# rec = fn()
# segs = prepare_for_highlight(rec)
# return segs, rec.get("validated", False), dynamic_dataset.current
# demo.load(load_example, inputs=prog, outputs=[inp_box, status, prog])
# apply_btn.click(
# fn=update_example,
# inputs=[inp_box, prog], # pass both the highlights *and* the example idx
# outputs=inp_box
# )
# #apply_btn.click(update_spans, inputs=inp_box, outputs=inp_box)
# prev_btn.click(lambda: nav(dynamic_dataset.prev), inputs=None, outputs=[inp_box, status, prog])
# validate_btn.click(do_validate, inputs=[inp_box, prog], outputs=[inp_box, status])
# next_btn.click(lambda: nav(dynamic_dataset.next), inputs=None, outputs=[inp_box, status, prog])
# skip_prev.click(lambda: nav(dynamic_dataset.jump_prev_unvalidated), inputs=None, outputs=[inp_box, status, prog])
# skip_next.click(lambda: nav(dynamic_dataset.jump_next_unvalidated), inputs=None, outputs=[inp_box, status, prog])
# return demo
def create_demo() -> gr.Blocks:
data = load_initial_data()
validated_store = load_all_validations()
# mark any pre-validated examples
for idx in validated_store:
if 0 <= idx < len(data):
data[idx]["validated"] = True
dynamic_dataset = DynamicDataset(data)
def make_info(rec):
fn = rec.get("filename", "โ")
pg = rec.get("page", "โ")
# Markdown with line break for Gradio
return f"**File:** `{fn}` \n**Page:** `{pg}`"
def align_spans_to_tokens(
highlighted: List[Dict[str, Union[str, None]]],
tokens: List[str]
) -> List[Tuple[int, int, str]]:
"""
Align each highlighted chunk to the next matching tokens in the list,
advancing a pointer so repeated tokens map in the order you clicked them.
"""
spans = []
search_start = 0
for entry in highlighted:
text = entry["token"]
label = entry.get("class_or_confidence") or entry.get("label") or entry.get("class")
if not label:
continue
chunk_toks = tokenize_text(text)
# scan only from the end of the last match
for i in range(search_start, len(tokens) - len(chunk_toks) + 1):
if tokens[i:i + len(chunk_toks)] == chunk_toks:
spans.append((i, i + len(chunk_toks) - 1, label))
search_start = i + len(chunk_toks)
break
else:
print(f"โ ๏ธ Couldnโt align chunk: {text!r}")
return spans
def load_example(idx):
rec = validated_store.get(idx, dynamic_dataset.example(idx))
segs = prepare_for_highlight(rec)
return segs, rec.get("validated", False), idx, make_info(rec)
def update_example(highlighted, idx: int):
rec = dynamic_dataset.data[idx]
# reโtokenize
orig_tokens = tokenize_text(rec["text"])
# realign highlights
new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# overwrite & mark un-validated
rec["tokenized_text"] = orig_tokens
rec["ner"] = new_ner
rec["validated"] = False
return prepare_for_highlight(rec), rec["validated"], idx, make_info(rec)
def do_validate(highlighted, idx: int):
# in-memory mark
dynamic_dataset.validate()
rec = dynamic_dataset.data[idx]
orig_tokens = tokenize_text(rec["text"])
new_ner = align_spans_to_tokens(highlighted, orig_tokens)
rec["tokenized_text"] = orig_tokens
rec["ner"] = new_ner
# persist to disk/store
save_single_validation(idx, rec)
return prepare_for_highlight(rec), True, make_info(rec)
def nav(fn):
rec = fn()
segs = prepare_for_highlight(rec)
return segs, rec.get("validated", False), dynamic_dataset.current, make_info(rec)
with gr.Blocks() as demo:
prog = gr.Slider(0, dynamic_dataset.len-1, value=0, step=1, label="Example #", interactive=False)
inp_box = gr.HighlightedText(label="Sentence", interactive=True)
info_md = gr.Markdown(label="Source") # โ shows filename & page
status = gr.Checkbox(label="Validated?", value=False, interactive=False)
gr.Markdown(
"[๐ Entity Tag Guide](https://huggingface.co/spaces/rafmacalaba/datause-annotation/blob/main/guidelines.md)"
)
with gr.Row():
prev_btn = gr.Button("โ๏ธ Previous")
apply_btn = gr.Button("๐ Apply Changes")
next_btn = gr.Button("Next โถ๏ธ")
with gr.Row():
skip_prev = gr.Button("โฎ๏ธ Prev Unvalidated")
validate_btn = gr.Button("โ
Validate")
skip_next = gr.Button("โญ๏ธ Next Unvalidated")
# initial load
demo.load(load_example, inputs=prog, outputs=[inp_box, status, prog, info_md])
# wire up actions (all now also update info_md)
apply_btn.click(update_example, inputs=[inp_box, prog], outputs=[inp_box, status, prog, info_md])
prev_btn.click(lambda: nav(dynamic_dataset.prev), inputs=None, outputs=[inp_box, status, prog, info_md])
next_btn.click(lambda: nav(dynamic_dataset.next), inputs=None, outputs=[inp_box, status, prog, info_md])
skip_prev.click(lambda: nav(dynamic_dataset.jump_prev_unvalidated), inputs=None, outputs=[inp_box, status, prog, info_md])
skip_next.click(lambda: nav(dynamic_dataset.jump_next_unvalidated), inputs=None, outputs=[inp_box, status, prog, info_md])
validate_btn.click(do_validate, inputs=[inp_box, prog], outputs=[inp_box, status, info_md])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True, inline=True, debug=True) |