|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY") |
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
|
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
search_tool = TavilySearchResults(tavily_api_key=TAVILY_API_KEY) |
|
|
|
SYSTEM_PROMPT = """ |
|
You are a highly knowledgeable and reliable Crypto Trading Advisor and Analyzer. |
|
Your goal is to assist users in understanding, analyzing, and making informed decisions about cryptocurrency trading. |
|
You provide accurate, concise, and actionable advice based on real-time data, historical trends, and established best practices. |
|
""" |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed |
|
): |
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
messages = [{"role": "system", "content": SYSTEM_PROMPT}] |
|
print("System prompt added to messages.") |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
for message_chunk in client.chat.completions.create( |
|
model="meta-llama/Llama-3.3-70B-Instruct", |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
token_text = message_chunk.choices[0].delta.content |
|
response += token_text |
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Ask about crypto trading or analysis.", likeable=True) |
|
|
|
max_tokens_slider = gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
) |
|
temperature_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
top_p_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P" |
|
) |
|
frequency_penalty_slider = gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty" |
|
) |
|
seed_slider = gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)" |
|
) |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
max_tokens_slider, |
|
temperature_slider, |
|
top_p_slider, |
|
frequency_penalty_slider, |
|
seed_slider, |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |