Update app.py
Browse files
app.py
CHANGED
@@ -11,25 +11,21 @@ client = OpenAI(
|
|
11 |
)
|
12 |
print("OpenAI client initialized.")
|
13 |
|
14 |
-
|
15 |
def respond(
|
16 |
message,
|
17 |
history: list[tuple[str, str]],
|
18 |
-
system_message,
|
19 |
-
max_tokens,
|
20 |
-
temperature,
|
21 |
-
top_p,
|
22 |
-
frequency_penalty,
|
23 |
-
seed
|
24 |
-
custom_model
|
25 |
):
|
26 |
-
|
27 |
print(f"Received message: {message}")
|
28 |
print(f"History: {history}")
|
29 |
print(f"System message: {system_message}")
|
30 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
31 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
32 |
-
print(f"Selected model (custom_model): {custom_model}")
|
33 |
|
34 |
# Convert seed to None if -1 (meaning random)
|
35 |
if seed == -1:
|
@@ -53,8 +49,8 @@ def respond(
|
|
53 |
messages.append({"role": "user", "content": message})
|
54 |
print("Latest user message appended.")
|
55 |
|
56 |
-
#
|
57 |
-
model_to_use =
|
58 |
print(f"Model selected for inference: {model_to_use}")
|
59 |
|
60 |
# Start with an empty string to build the response as tokens stream in
|
@@ -80,10 +76,10 @@ def respond(
|
|
80 |
|
81 |
# GRADIO UI
|
82 |
|
83 |
-
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="
|
84 |
print("Chatbot interface created.")
|
85 |
|
86 |
-
system_message_box = gr.Textbox(value="
|
87 |
|
88 |
max_tokens_slider = gr.Slider(
|
89 |
minimum=1,
|
@@ -121,21 +117,7 @@ seed_slider = gr.Slider(
|
|
121 |
label="Seed (-1 for random)"
|
122 |
)
|
123 |
|
124 |
-
#
|
125 |
-
custom_model_box = gr.Textbox(
|
126 |
-
value="",
|
127 |
-
label="Custom Model",
|
128 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
129 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
130 |
-
)
|
131 |
-
|
132 |
-
def set_custom_model_from_radio(selected):
|
133 |
-
"""
|
134 |
-
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
135 |
-
We will update the Custom Model text box with that selection automatically.
|
136 |
-
"""
|
137 |
-
print(f"Featured model selected: {selected}")
|
138 |
-
return selected
|
139 |
|
140 |
demo = gr.ChatInterface(
|
141 |
fn=respond,
|
@@ -146,7 +128,6 @@ demo = gr.ChatInterface(
|
|
146 |
top_p_slider,
|
147 |
frequency_penalty_slider,
|
148 |
seed_slider,
|
149 |
-
custom_model_box,
|
150 |
],
|
151 |
fill_height=True,
|
152 |
chatbot=chatbot,
|
@@ -155,49 +136,11 @@ demo = gr.ChatInterface(
|
|
155 |
print("ChatInterface object created.")
|
156 |
|
157 |
with demo:
|
158 |
-
|
159 |
-
|
160 |
-
label="Filter Models",
|
161 |
-
placeholder="Search for a featured model...",
|
162 |
-
lines=1
|
163 |
-
)
|
164 |
-
print("Model search box created.")
|
165 |
-
|
166 |
-
models_list = [
|
167 |
-
"meta-llama/Llama-3.3-70B-Instruct"
|
168 |
-
]
|
169 |
-
print("Models list initialized.")
|
170 |
-
|
171 |
-
featured_model_radio = gr.Radio(
|
172 |
-
label="Select a model below",
|
173 |
-
choices=models_list,
|
174 |
-
value="meta-llama/Llama-3.3-70B-Instruct",
|
175 |
-
interactive=True
|
176 |
-
)
|
177 |
-
print("Featured models radio button created.")
|
178 |
-
|
179 |
-
def filter_models(search_term):
|
180 |
-
print(f"Filtering models with search term: {search_term}")
|
181 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
182 |
-
print(f"Filtered models: {filtered}")
|
183 |
-
return gr.update(choices=filtered)
|
184 |
-
|
185 |
-
model_search_box.change(
|
186 |
-
fn=filter_models,
|
187 |
-
inputs=model_search_box,
|
188 |
-
outputs=featured_model_radio
|
189 |
-
)
|
190 |
-
print("Model search box change event linked.")
|
191 |
-
|
192 |
-
featured_model_radio.change(
|
193 |
-
fn=set_custom_model_from_radio,
|
194 |
-
inputs=featured_model_radio,
|
195 |
-
outputs=custom_model_box
|
196 |
-
)
|
197 |
-
print("Featured model radio button change event linked.")
|
198 |
|
199 |
print("Gradio interface initialized.")
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
print("Launching the demo application.")
|
203 |
-
demo.launch()
|
|
|
11 |
)
|
12 |
print("OpenAI client initialized.")
|
13 |
|
|
|
14 |
def respond(
|
15 |
message,
|
16 |
history: list[tuple[str, str]],
|
17 |
+
system_message="You are a helpful assistant.",
|
18 |
+
max_tokens=512,
|
19 |
+
temperature=0.7,
|
20 |
+
top_p=0.95,
|
21 |
+
frequency_penalty=0.0,
|
22 |
+
seed=-1
|
|
|
23 |
):
|
|
|
24 |
print(f"Received message: {message}")
|
25 |
print(f"History: {history}")
|
26 |
print(f"System message: {system_message}")
|
27 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
28 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
29 |
|
30 |
# Convert seed to None if -1 (meaning random)
|
31 |
if seed == -1:
|
|
|
49 |
messages.append({"role": "user", "content": message})
|
50 |
print("Latest user message appended.")
|
51 |
|
52 |
+
# Set the model to "meta" by default
|
53 |
+
model_to_use = "meta-llama/Llama-3.3-70B-Instruct"
|
54 |
print(f"Model selected for inference: {model_to_use}")
|
55 |
|
56 |
# Start with an empty string to build the response as tokens stream in
|
|
|
76 |
|
77 |
# GRADIO UI
|
78 |
|
79 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Start chatting!", likeable=True, layout="panel")
|
80 |
print("Chatbot interface created.")
|
81 |
|
82 |
+
system_message_box = gr.Textbox(value="You are a helpful assistant.", label="System Prompt", visible=False)
|
83 |
|
84 |
max_tokens_slider = gr.Slider(
|
85 |
minimum=1,
|
|
|
117 |
label="Seed (-1 for random)"
|
118 |
)
|
119 |
|
120 |
+
# Removed the custom_model_box as the model is pre-set
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
demo = gr.ChatInterface(
|
123 |
fn=respond,
|
|
|
128 |
top_p_slider,
|
129 |
frequency_penalty_slider,
|
130 |
seed_slider,
|
|
|
131 |
],
|
132 |
fill_height=True,
|
133 |
chatbot=chatbot,
|
|
|
136 |
print("ChatInterface object created.")
|
137 |
|
138 |
with demo:
|
139 |
+
# No need for a model selection accordion since the model is fixed to "meta-llama"
|
140 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
print("Gradio interface initialized.")
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
print("Launching the demo application.")
|
146 |
+
demo.launch()
|