Spaces:
Runtime error
Runtime error
Fix
Browse files
app.py
CHANGED
|
@@ -15,11 +15,15 @@ np.random.seed(0)
|
|
| 15 |
from util import print_size, sampling
|
| 16 |
from network import CleanUNet
|
| 17 |
import torchaudio
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def load_simple(filename):
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
CONFIG = "configs/DNS-large-full.json"
|
| 25 |
CHECKPOINT = "./exp/DNS-large-high/checkpoint/pretrained.pkl"
|
|
@@ -65,24 +69,16 @@ def denoise(filename, ckpt_path = CHECKPOINT, out = "out.wav"):
|
|
| 65 |
net.eval()
|
| 66 |
|
| 67 |
# inference
|
| 68 |
-
batch_size = 1000000
|
| 69 |
noisy_audio = load_simple(filename)
|
| 70 |
-
LENGTH = len(noisy_audio[0].squeeze())
|
| 71 |
-
noisy_audio = torch.chunk(noisy_audio, LENGTH // batch_size + 1, dim=1)
|
| 72 |
-
all_audio = []
|
| 73 |
|
| 74 |
for batch in tqdm(noisy_audio):
|
| 75 |
with torch.no_grad():
|
| 76 |
generated_audio = sampling(net, batch)
|
| 77 |
-
generated_audio = generated_audio.cpu()
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
all_audio = np.concatenate(all_audio, axis=0)
|
| 81 |
-
sf.write(out, np.ravel(all_audio.squeeze()), 32000)
|
| 82 |
|
| 83 |
return out
|
| 84 |
|
| 85 |
-
|
| 86 |
audio = gr.inputs.Audio(label = "Audio to denoise", type = 'filepath')
|
| 87 |
inputs = [audio]
|
| 88 |
outputs = gr.outputs.Audio(label = "Denoised audio", type = 'filepath')
|
|
|
|
| 15 |
from util import print_size, sampling
|
| 16 |
from network import CleanUNet
|
| 17 |
import torchaudio
|
| 18 |
+
import torchaudio.transforms as T
|
| 19 |
+
|
| 20 |
+
SAMPLE_RATE = 22050
|
| 21 |
|
| 22 |
def load_simple(filename):
|
| 23 |
+
wav, sr = torchaudio.load(filename)
|
| 24 |
+
resampler = T.Resample(sr, SAMPLE_RATE, dtype=wav.dtype)
|
| 25 |
+
resampled_wav = resampler(audio)
|
| 26 |
+
return resampled_wav
|
| 27 |
|
| 28 |
CONFIG = "configs/DNS-large-full.json"
|
| 29 |
CHECKPOINT = "./exp/DNS-large-high/checkpoint/pretrained.pkl"
|
|
|
|
| 69 |
net.eval()
|
| 70 |
|
| 71 |
# inference
|
|
|
|
| 72 |
noisy_audio = load_simple(filename)
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
for batch in tqdm(noisy_audio):
|
| 75 |
with torch.no_grad():
|
| 76 |
generated_audio = sampling(net, batch)
|
| 77 |
+
generated_audio = generated_audio.cpu()
|
| 78 |
+
sf.write(out, np.ravel(generated_audio.squeeze()), SAMPLE_RATE)
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
return out
|
| 81 |
|
|
|
|
| 82 |
audio = gr.inputs.Audio(label = "Audio to denoise", type = 'filepath')
|
| 83 |
inputs = [audio]
|
| 84 |
outputs = gr.outputs.Audio(label = "Denoised audio", type = 'filepath')
|