File size: 6,251 Bytes
907b7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import cv2
import random
import numpy as np

__all__ = ['Compose', 'Normalize', 'CenterCrop', 'RgbToGray', 'RandomCrop',
           'HorizontalFlip', 'AddNoise', 'NormalizeUtterance']


class Compose(object):
    """Compose several preprocess together.
    Args:
        preprocess (list of ``Preprocess`` objects): list of preprocess to compose.  
    """
    # preprecess ([preprocess]) : dataloaders.py์—์„œ ์‚ฌ์šฉ๋จ
    # preprocessing['train'] = Compose([
    #                                 Normalize( 0.0,255.0 ),
    #                                 RandomCrop(crop_size),
    #                                 HorizontalFlip(0.5),
    #                                 Normalize(mean, std) ])

    def __init__(self, preprocess):
        self.preprocess = preprocess

    def __call__(self, sample):
        for t in self.preprocess:
            sample = t(sample)
        return sample   # preprocess์— ๋‹ด๊ธด ๊ฐ augmentation ์ „์ฒ˜๋ฆฌ๊ฐ€ sample์— ๋‹ด๊ฒจ ๋ฐ˜ํ™˜๋œ๋‹ค.

    def __repr__(self):   # __repr__() : ๊ด„ํ˜ธ ์•ˆ์— ์žˆ๋Š” ๊ฒƒ์„ ๋ฌธ์ž์—ด๋กœ ๋ฐ˜ํ™˜
        format_string = self.__class__.__name__ + '('
        for t in self.preprocess:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string   # ํด๋ž˜์Šค๋ช…, ์ „์ฒ˜๋ฆฌ๋ช… ๋“ฑ์„ ๊ด„ํ˜ธ ์•ˆ์— ์ถœ๋ ฅ


class RgbToGray(object):
    """Convert image to grayscale.
    Converts a numpy.ndarray (H x W x C) in the range
    [0, 255] to a numpy.ndarray of shape (H x W x C) in the range [0.0, 1.0].
    """

    def __call__(self, frames):
        """
        Args:
            img (numpy.ndarray): Image to be converted to gray.
        Returns:
            numpy.ndarray: grey image
        """
        frames = np.stack([cv2.cvtColor(_, cv2.COLOR_RGB2GRAY) for _ in frames], axis=0)
        return frames

    def __repr__(self):
        return self.__class__.__name__ + '()'


class Normalize(object):
    """Normalize a ndarray image with mean and standard deviation.
    """

    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, frames):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        Returns:
            Tensor: Normalized Tensor image.
        """
        frames = (frames - self.mean) / self.std   # ํŽธ์ฐจ๋ฅผ ํ‘œ์ค€ ํŽธ์ฐจ๋กœ ๋‚˜๋ˆˆ ๊ฐ’ : z-score normalization
        return frames

    def __repr__(self):
        return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std)


class CenterCrop(object):
    """Crop the given image at the center
    """
    def __init__(self, size):
        self.size = size

    def __call__(self, frames):
        """
        Args:
            img (numpy.ndarray): Images to be cropped.
        Returns:
            numpy.ndarray: Cropped image.
        """
        t, h, w = frames.shape
        th, tw = self.size   # ์ž๋ฅด๋ ค๊ณ  ์ง€์ •ํ•œ ๋†’์ด์™€ ๋„“์ด ์‚ฌ์ด์ฆˆ
        delta_w = int(round((w - tw))/2.)
        delta_h = int(round((h - th))/2.)
        frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw]
        return frames  # center crop๋œ ์ด๋ฏธ์ง€ ๋ฐ˜ํ™˜ (np.array)


class RandomCrop(object):
    """Crop the given image at the center
    """

    def __init__(self, size):
        self.size = size

    def __call__(self, frames):
        """
        Args:
            img (numpy.ndarray): Images to be cropped.
        Returns:
            numpy.ndarray: Cropped image.
        """
        t, h, w = frames.shape  # size: 96,96
        th, tw = self.size
        delta_w = random.randint(0, w-tw)
        delta_h = random.randint(0, h-th)
        frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw]
        return frames   # random crop๋œ ์ด๋ฏธ์ง€ ๋ฐ˜ํ™˜ (np.array)

    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)   # random crop๋œ ์‚ฌ์ด์ฆˆ๋ฅผ ๋ฐ˜ํ™˜


class HorizontalFlip(object):   # HorizontalFlip(๋น„์œจ๊ฐ’ ์ž…)
    """Flip image horizontally.
    """

    def __init__(self, flip_ratio):
        self.flip_ratio = flip_ratio

    def __call__(self, frames):
        """
        Args:
            img (numpy.ndarray): Images to be flipped with a probability flip_ratio
        Returns:
            numpy.ndarray: Cropped image.
        """
        t, h, w = frames.shape
        if random.random() < self.flip_ratio:
            for index in range(t):
                frames[index] = cv2.flip(frames[index], 1)
        return frames


class NormalizeUtterance():
    """Normalize per raw audio by removing the mean and divided by the standard deviation
    """
    # z-score ์ •๊ทœํ™”๋ฅผ ์‹คํ–‰

    def __call__(self, signal):
        signal_std = 0. if np.std(signal)==0. else np.std(signal)
        signal_mean = np.mean(signal)
        return (signal - signal_mean) / signal_std
        

class AddNoise(object):
    """Add SNR noise [-1, 1]
    """
    # snr(signal-to-noise ratio) : ์‹ ํ˜ธ ๋Œ€ ์žก์Œ ๋น„, ์ด ๊ฐ’์ด ํด์ˆ˜๋ก 

    def __init__(self, noise, snr_levels=[-5, 0, 5, 10, 15, 20, 9999]):
        assert noise.dtype in [np.float32, np.float64], "noise only supports float data type"   # noise๋Š” dtype๋งŒ ์ง€์›ํ•œ๋‹ค.
        
        self.noise = noise
        self.snr_levels = snr_levels

    def get_power(self, clip):
        clip2 = clip.copy()
        clip2 = clip2 **2
        return np.sum(clip2) / (len(clip2) * 1.0)

    def __call__(self, signal):
        assert signal.dtype in [np.float32, np.float64], "signal only supports float32 data type"   # signal์€ dtype๋งŒ ์ง€์›ํ•œ๋‹ค.
        snr_target = random.choice(self.snr_levels)
        if snr_target == 9999:
            return signal
        else:
            # -- get noise
            start_idx = random.randint(0, len(self.noise)-len(signal))
            noise_clip = self.noise[start_idx:start_idx+len(signal)]

            sig_power = self.get_power(signal)
            noise_clip_power = self.get_power(noise_clip)
            factor = (sig_power / noise_clip_power ) / (10**(snr_target / 10.0))
            desired_signal = (signal + noise_clip*np.sqrt(factor)).astype(np.float32)
            return desired_signal