Spaces:
Running
Running
File size: 23,615 Bytes
aaa3e82 98727e9 37495c1 aaa3e82 98727e9 37495c1 98727e9 37495c1 98727e9 aaa3e82 afb386c 98727e9 afb386c c1359fb 37495c1 98727e9 c1359fb 37495c1 c1359fb afb386c aaa3e82 37495c1 aaa3e82 98727e9 37495c1 c1359fb 98727e9 aaa3e82 afb386c aaa3e82 f4114e2 afb386c f4114e2 afb386c f4114e2 afb386c f4114e2 afb386c f4114e2 afb386c f4114e2 aaa3e82 f4114e2 aaa3e82 f4114e2 aaa3e82 f4114e2 aaa3e82 f4114e2 aaa3e82 f4114e2 aaa3e82 f4114e2 aaa3e82 f4114e2 aaa3e82 0466140 afb386c 0466140 afb386c 0466140 aaa3e82 0466140 aaa3e82 0466140 aaa3e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
"""
A1D MCP Server - Gradio Application
Universal AI Tools for image and video processing
"""
import gradio as gr
import os
from typing import Optional, Tuple, Union
from utils import A1DAPIClient, validate_url, validate_scale, prepare_request_data, format_response_with_preview
from config import GRADIO_CONFIG, TOOLS_CONFIG
from mcp_handler import get_api_key_from_headers
# Initialize API client
def get_api_client():
"""Get API client with current API key"""
# Try to get API key from multiple sources
api_key = None
user_agent = ""
request_path = ""
# 1. Try from request headers (for MCP clients)
try:
request = gr.request()
if request and hasattr(request, 'headers'):
headers = dict(request.headers)
api_key = get_api_key_from_headers(headers)
user_agent = headers.get('user-agent', '')
request_path = getattr(request, 'url', {}).path if hasattr(
request, 'url') else ""
print(f"π Request headers found - User-Agent: {user_agent}")
print(f"π Request path: {request_path}")
print(
f"π API key from headers: {'Found' if api_key else 'Not found'}")
except Exception as e:
print(f"π No request context available: {e}")
# 2. Check if running on Hugging Face Space
is_space = os.getenv("SPACE_ID") is not None
space_api_key = os.getenv("A1D_API_KEY")
print(
f"π Environment check - Is Space: {is_space}, Space API key: {'Found' if space_api_key else 'Not found'}")
# 3. Determine if this is a web browser request or MCP client request
is_web_request = False
is_mcp_request = False
# Check if this is an MCP request
if request_path and ('/mcp/' in request_path or '/gradio_api/mcp' in request_path):
is_mcp_request = True
print("π Detected MCP API request")
if user_agent:
user_agent_lower = user_agent.lower()
# Web browsers typically have 'mozilla' in user agent
is_web_request = ('mozilla' in user_agent_lower or
'chrome' in user_agent_lower or
'safari' in user_agent_lower or
'edge' in user_agent_lower)
print(f"π Request type detection - Is web request: {is_web_request}")
else:
# If no user agent, assume it's NOT a web request (likely MCP client)
is_web_request = False
print("π No User-Agent found - assuming MCP client request")
# 4. STRICT RULE: MCP requests MUST have API key
if is_mcp_request and not api_key:
error_msg = (
"π API key is REQUIRED for MCP requests!\n\n"
"This is an MCP API endpoint. You must provide your API key.\n"
"Get your API key at https://a1d.ai\n\n"
"Configuration example:\n"
'{\n'
' "mcpServers": {\n'
' "a1d": {\n'
' "command": "npx",\n'
' "args": [\n'
' "mcp-remote@latest",\n'
' "https://aigchacker-a1d-mcp-server.hf.space/gradio_api/mcp/sse",\n'
' "--header",\n'
' "API_KEY:${MCP_API_KEY}"\n'
' ],\n'
' "env": {\n'
' "MCP_API_KEY": "your_a1d_api_key_here"\n'
' }\n'
' }\n'
' }\n'
'}'
)
print(f"β MCP API key validation failed: {error_msg}")
raise ValueError(error_msg)
# 5. Use Space API key ONLY for web browser requests on Hugging Face Space
if not api_key and is_space and space_api_key and is_web_request and not is_mcp_request:
print("π‘ Using API key from Space environment variable (web demo)")
return A1DAPIClient(space_api_key)
# 6. For all other cases, user API key is mandatory
if not api_key:
error_msg = (
"π API key is required!\n\n"
"Please provide API_KEY in request headers.\n"
"Get your API key at https://a1d.ai\n\n"
"Configuration example:\n"
'{\n'
' "mcpServers": {\n'
' "a1d": {\n'
' "command": "npx",\n'
' "args": [\n'
' "mcp-remote@latest",\n'
' "https://aigchacker-a1d-mcp-server.hf.space/gradio_api/mcp/sse",\n'
' "--header",\n'
' "API_KEY:${MCP_API_KEY}"\n'
' ],\n'
' "env": {\n'
' "MCP_API_KEY": "your_a1d_api_key_here"\n'
' }\n'
' }\n'
' }\n'
'}'
)
print(f"β API key validation failed: {error_msg}")
raise ValueError(error_msg)
print("π Using API key from MCP client headers")
return A1DAPIClient(api_key)
def remove_bg(image_url: str) -> Tuple[str, Optional[str]]:
"""Remove background from images using AI.
Args:
image_url: The URL of the image to remove background from
Returns:
Tuple of (result_message, media_url_for_preview)
"""
try:
if not validate_url(image_url):
return "β Error: Invalid image URL format", None
client = get_api_client()
data = prepare_request_data("remove_bg", image_url=image_url)
# Use the new method that waits for result
response = client.make_request_with_result(
TOOLS_CONFIG["remove_bg"]["api_endpoint"],
data,
timeout=120 # 2 minutes timeout
)
return format_response_with_preview(response, "remove_bg")
except Exception as e:
return f"β Error: {str(e)}", None
def image_upscaler(image_url: str, scale: int = 2) -> Tuple[str, Optional[str]]:
"""Upscale images using AI with specified scale factor.
Args:
image_url: The URL of the image to upscale
scale: Scale factor for upscaling (2, 4, 8, or 16). Default: 2
Returns:
Tuple of (result_message, media_url_for_preview)
"""
try:
if not validate_url(image_url):
return "β Error: Invalid image URL format", None
if not validate_scale(scale):
return "β Error: Scale must be 2, 4, 8, or 16", None
client = get_api_client()
data = prepare_request_data(
"image_upscaler", image_url=image_url, scale=scale)
response = client.make_request_with_result(
TOOLS_CONFIG["image_upscaler"]["api_endpoint"],
data,
timeout=120
)
return format_response_with_preview(response, "image_upscaler")
except Exception as e:
return f"β Error: {str(e)}", None
def video_upscaler(video_url: str) -> Tuple[str, Optional[str]]:
"""Upscale videos using AI.
Args:
video_url: The URL of the video to upscale
Returns:
Tuple of (result_message, media_url_for_preview)
"""
try:
if not validate_url(video_url):
return "β Error: Invalid video URL format", None
client = get_api_client()
data = prepare_request_data("video_upscaler", video_url=video_url)
response = client.make_request_with_result(
TOOLS_CONFIG["video_upscaler"]["api_endpoint"],
data,
timeout=300 # 5 minutes for video processing
)
return format_response_with_preview(response, "video_upscaler")
except Exception as e:
return f"β Error: {str(e)}", None
def image_vectorization(image_url: str) -> Tuple[str, Optional[str]]:
"""Convert images to vector format using AI.
Args:
image_url: The URL of the image to vectorize
Returns:
Tuple of (result_message, media_url_for_preview)
"""
try:
if not validate_url(image_url):
return "β Error: Invalid image URL format", None
client = get_api_client()
data = prepare_request_data("image_vectorization", image_url=image_url)
response = client.make_request_with_result(
TOOLS_CONFIG["image_vectorization"]["api_endpoint"],
data,
timeout=120
)
return format_response_with_preview(response, "image_vectorization")
except Exception as e:
return f"β Error: {str(e)}", None
def image_extends(image_url: str) -> Tuple[str, Optional[str]]:
"""Extend images using AI.
Args:
image_url: The URL of the image to extend
Returns:
Tuple of (result_message, media_url_for_preview)
"""
try:
if not validate_url(image_url):
return "β Error: Invalid image URL format", None
client = get_api_client()
data = prepare_request_data("image_extends", image_url=image_url)
response = client.make_request_with_result(
TOOLS_CONFIG["image_extends"]["api_endpoint"],
data,
timeout=120
)
return format_response_with_preview(response, "image_extends")
except Exception as e:
return f"β Error: {str(e)}", None
def image_generator(prompt: str) -> Tuple[str, Optional[str]]:
"""Generate images using AI from text prompts.
Args:
prompt: Text prompt to generate image from
Returns:
Tuple of (result_message, media_url_for_preview)
"""
try:
if not prompt or not prompt.strip():
return "β Error: Prompt is required and cannot be empty", None
client = get_api_client()
data = prepare_request_data("image_generator", prompt=prompt.strip())
response = client.make_request_with_result(
TOOLS_CONFIG["image_generator"]["api_endpoint"],
data,
timeout=120
)
return format_response_with_preview(response, "image_generator")
except Exception as e:
return f"β Error: {str(e)}", None
# Wrapper functions for Gradio interface
def remove_bg_wrapper(image_url: str):
"""Wrapper for remove_bg that returns message and media for Gradio
Args:
image_url: The URL of the image to remove background from. Must be a valid HTTP/HTTPS URL pointing to an image file.
Returns:
Tuple of (result_message, media_url_for_preview)
"""
message, media_url = remove_bg(image_url)
return message, media_url if media_url else None
def image_upscaler_wrapper(image_url: str, scale: int):
"""Wrapper for image_upscaler that returns message and media for Gradio
Args:
image_url: The URL of the image to upscale. Must be a valid HTTP/HTTPS URL pointing to an image file.
scale: Scale factor for upscaling. Choose from 2, 4, 8, or 16. Higher values produce larger images but take longer to process.
Returns:
Tuple of (result_message, media_url_for_preview)
"""
message, media_url = image_upscaler(image_url, scale)
return message, media_url if media_url else None
def video_upscaler_wrapper(video_url: str):
"""Wrapper for video_upscaler that returns message and media for Gradio
Args:
video_url: The URL of the video to upscale. Must be a valid HTTP/HTTPS URL pointing to a video file (MP4, AVI, MOV, etc.).
Returns:
Tuple of (result_message, media_url_for_preview)
"""
message, media_url = video_upscaler(video_url)
return message, media_url if media_url else None
def image_vectorization_wrapper(image_url: str):
"""Wrapper for image_vectorization that returns message and media for Gradio
Args:
image_url: The URL of the image to convert to vector format. Must be a valid HTTP/HTTPS URL pointing to an image file.
Returns:
Tuple of (result_message, media_url_for_preview)
"""
message, media_url = image_vectorization(image_url)
return message, media_url if media_url else None
def image_extends_wrapper(image_url: str):
"""Wrapper for image_extends that returns message and media for Gradio
Args:
image_url: The URL of the image to extend. Must be a valid HTTP/HTTPS URL pointing to an image file.
Returns:
Tuple of (result_message, media_url_for_preview)
"""
message, media_url = image_extends(image_url)
return message, media_url if media_url else None
def image_generator_wrapper(prompt: str):
"""Wrapper for image_generator that returns message and media for Gradio
Args:
prompt: Text description of the image to generate. Be descriptive and specific for better results. Example: "A beautiful sunset over mountains with vibrant orange and purple colors".
Returns:
Tuple of (result_message, media_url_for_preview)
"""
message, media_url = image_generator(prompt)
return message, media_url if media_url else None
# MCP Documentation Component
def create_mcp_docs():
"""Create MCP documentation component"""
return gr.Markdown("""
## π§ MCP Client Configuration
### β οΈ API Key Required for Client Usage
When using with your own MCP client (Claude Desktop, Cursor, etc.), you **must** provide your API key:
```json
{
"mcpServers": {
"a1d": {
"command": "npx",
"args": [
"mcp-remote@latest",
"https://aigchacker-a1d-mcp-server.hf.space/gradio_api/mcp/sse",
"--header",
"API_KEY:${MCP_API_KEY}"
],
"env": {
"MCP_API_KEY": "your_a1d_api_key_here"
}
}
}
}
```
**π API key is mandatory for client usage.** Get your API key at [A1D.ai](https://a1d.ai/home/api).
---
### π Using the Hosted Demo on Hugging Face Space
The hosted demo at [https://huggingface.co/spaces/aigchacker/a1d-mcp-server](https://huggingface.co/spaces/aigchacker/a1d-mcp-server) uses our provided API key for demonstration purposes only, with limited usage. For production use, please obtain your own API key.
---
### π How to Get Your A1D API Key:
1. **Visit A1D Website**: Go to [https://a1d.ai](https://a1d.ai)
2. **Sign Up/Login**: Create an account or login to your existing account
3. **Access Dashboard**: Navigate to your user dashboard
4. **Generate API Key**: Look for "API Keys" or "Developer" section
5. **Copy Your Key**: Copy the generated API key
6. **Replace in Config**: Replace `your_a1d_api_key_here` with your actual API key
---
### π Available MCP Tools:
- `remove_bg_wrapper` - Remove background from images
- `image_upscaler_wrapper` - Upscale images (2x/4x/8x/16x)
- `video_upscaler_wrapper` - Upscale videos
- `image_vectorization_wrapper` - Convert images to vector format
- `image_extends_wrapper` - Extend images using AI
- `image_generator_wrapper` - Generate images from text prompts
### π MCP Endpoints:
- **SSE Endpoint**: `https://aigchacker-a1d-mcp-server.hf.space/gradio_api/mcp/sse`
- **Schema**: `https://aigchacker-a1d-mcp-server.hf.space/gradio_api/mcp/schema`
### π‘ Usage Summary:
- **Hosted Demo**: Works directly in browser with provided API key
- **MCP Client**: Requires your own API key for production use
""")
# Create Gradio interfaces for each tool
def create_gradio_app():
"""Create the main Gradio application with all tools"""
# Background Removal Interface with MCP docs
with gr.Blocks(title="π Background Removal") as remove_bg_interface:
gr.Markdown("# π Background Removal")
gr.Markdown("Remove background from images using AI")
with gr.Row():
with gr.Column():
bg_input = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
info="Enter the URL of the image to remove background from"
)
bg_button = gr.Button("Remove Background", variant="primary")
with gr.Column():
bg_result = gr.Textbox(label="Result")
bg_preview = gr.Image(label="Preview")
bg_button.click(
fn=remove_bg_wrapper,
inputs=[bg_input],
outputs=[bg_result, bg_preview]
)
# Add MCP documentation
create_mcp_docs()
# Image Upscaler Interface with MCP docs
with gr.Blocks(title="π Image Upscaler") as image_upscaler_interface:
gr.Markdown("# π Image Upscaler")
gr.Markdown("Upscale images using AI with specified scale factor")
with gr.Row():
with gr.Column():
up_input = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
info="Enter the URL of the image to upscale"
)
up_scale = gr.Dropdown(
choices=[2, 4, 8, 16],
value=2,
label="Scale Factor",
info="Choose the upscaling factor"
)
up_button = gr.Button("Upscale Image", variant="primary")
with gr.Column():
up_result = gr.Textbox(label="Result")
up_preview = gr.Image(label="Preview")
up_button.click(
fn=image_upscaler_wrapper,
inputs=[up_input, up_scale],
outputs=[up_result, up_preview]
)
# Add MCP documentation
create_mcp_docs()
# Video Upscaler Interface with MCP docs
with gr.Blocks(title="π¬ Video Upscaler") as video_upscaler_interface:
gr.Markdown("# π¬ Video Upscaler")
gr.Markdown("Upscale videos using AI")
with gr.Row():
with gr.Column():
vid_input = gr.Textbox(
label="Video URL",
placeholder="https://example.com/video.mp4",
info="Enter the URL of the video to upscale"
)
vid_button = gr.Button("Upscale Video", variant="primary")
with gr.Column():
vid_result = gr.Textbox(label="Result")
vid_preview = gr.Video(label="Preview")
vid_button.click(
fn=video_upscaler_wrapper,
inputs=[vid_input],
outputs=[vid_result, vid_preview]
)
# Add MCP documentation
create_mcp_docs()
# Image Vectorization Interface with MCP docs
with gr.Blocks(title="π Image Vectorization") as image_vectorization_interface:
gr.Markdown("# π Image Vectorization")
gr.Markdown("Convert images to vector format using AI")
with gr.Row():
with gr.Column():
vec_input = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
info="Enter the URL of the image to convert to vector format"
)
vec_button = gr.Button("Vectorize Image", variant="primary")
with gr.Column():
vec_result = gr.Textbox(label="Result")
vec_preview = gr.Image(label="Preview")
vec_button.click(
fn=image_vectorization_wrapper,
inputs=[vec_input],
outputs=[vec_result, vec_preview]
)
# Add MCP documentation
create_mcp_docs()
# Image Extension Interface with MCP docs
with gr.Blocks(title="πΌοΈ Image Extension") as image_extends_interface:
gr.Markdown("# πΌοΈ Image Extension")
gr.Markdown("Extend images using AI")
with gr.Row():
with gr.Column():
ext_input = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
info="Enter the URL of the image to extend"
)
ext_button = gr.Button("Extend Image", variant="primary")
with gr.Column():
ext_result = gr.Textbox(label="Result")
ext_preview = gr.Image(label="Preview")
ext_button.click(
fn=image_extends_wrapper,
inputs=[ext_input],
outputs=[ext_result, ext_preview]
)
# Add MCP documentation
create_mcp_docs()
# Image Generator Interface with MCP docs
with gr.Blocks(title="π¨ Image Generator") as image_generator_interface:
gr.Markdown("# π¨ Image Generator")
gr.Markdown("Generate images using AI from text prompts")
with gr.Row():
with gr.Column():
gen_input = gr.Textbox(
label="Text Prompt",
placeholder="A beautiful sunset over mountains",
info="Enter a text description to generate an image",
lines=3
)
gen_button = gr.Button("Generate Image", variant="primary")
with gr.Column():
gen_result = gr.Textbox(label="Result")
gen_preview = gr.Image(label="Preview")
gen_button.click(
fn=image_generator_wrapper,
inputs=[gen_input],
outputs=[gen_result, gen_preview]
)
# Add MCP documentation
create_mcp_docs()
# Create tabbed interface
demo = gr.TabbedInterface(
[
remove_bg_interface,
image_upscaler_interface,
video_upscaler_interface,
image_vectorization_interface,
image_extends_interface,
image_generator_interface
],
[
"Background Removal",
"Image Upscaler",
"Video Upscaler",
"Image Vectorization",
"Image Extension",
"Image Generator"
],
title=GRADIO_CONFIG["title"],
theme=GRADIO_CONFIG["theme"]
)
return demo
if __name__ == "__main__":
print("π Starting A1D MCP Server...")
print("=" * 70)
# Check environment and show configuration
is_space = os.getenv("SPACE_ID") is not None
space_api_key = os.getenv("A1D_API_KEY")
if is_space and space_api_key:
print("β
Running on Hugging Face Space with demo API key")
print("π Web demo: Works directly with provided API key")
print("π MCP clients: Must provide their own API key")
elif is_space:
print("β οΈ Running on Hugging Face Space without API key")
print("π All users must provide their own API key")
else:
print("π₯οΈ Running locally")
if space_api_key:
print("β
Local API key found")
else:
print("π Users must provide their own API key")
print(f"\nπ― Title: {GRADIO_CONFIG['title']}")
print(
f"π Server: http://{GRADIO_CONFIG['server_name']}:{GRADIO_CONFIG['server_port']}")
print(
f"π§ MCP Endpoint: http://{GRADIO_CONFIG['server_name']}:{GRADIO_CONFIG['server_port']}/gradio_api/mcp/sse")
print(f"π Available Tools: {len(TOOLS_CONFIG)} AI tools")
print(f"\nπ Authentication Strategy:")
print(" - Space demo: Uses provided API key (limited usage)")
print(" - MCP clients: Must provide own API key (production usage)")
print(" - Get API key at: https://a1d.ai")
print("=" * 70)
# Create and launch the app
demo = create_gradio_app()
# Launch the Gradio app with MCP server enabled
demo.launch(
server_name=GRADIO_CONFIG["server_name"],
server_port=GRADIO_CONFIG["server_port"],
share=GRADIO_CONFIG["share"],
mcp_server=True # Enable MCP server functionality
)
|