aijack commited on
Commit
65a04cc
·
1 Parent(s): c18bd78

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -71
app.py DELETED
@@ -1,71 +0,0 @@
1
- import gradio as gr
2
- import torch
3
- from sahi.prediction import ObjectPrediction
4
- from sahi.utils.cv import visualize_object_predictions, read_image
5
- from ultralyticsplus import YOLO
6
-
7
-
8
-
9
- def yolov8_go(
10
- image: gr.inputs.Image = None,
11
- model_path: gr.inputs.Dropdown = None,
12
- image_size: gr.inputs.Slider = 640,
13
- conf_threshold: gr.inputs.Slider = 0.25,
14
- iou_threshold: gr.inputs.Slider = 0.45,
15
- ):
16
-
17
- model = YOLO(model_path)
18
- model.conf = conf_threshold
19
- model.iou = iou_threshold
20
- results = model.predict(image, imgsz=image_size, return_outputs=True)
21
- object_prediction_list = []
22
- for _, image_results in enumerate(results):
23
- if len(image_results)!=0:
24
- image_predictions_in_xyxy_format = image_results['det']
25
- for pred in image_predictions_in_xyxy_format:
26
- x1, y1, x2, y2 = (
27
- int(pred[0]),
28
- int(pred[1]),
29
- int(pred[2]),
30
- int(pred[3]),
31
- )
32
- bbox = [x1, y1, x2, y2]
33
- score = pred[4]
34
- category_name = model.model.names[int(pred[5])]
35
- category_id = pred[5]
36
- object_prediction = ObjectPrediction(
37
- bbox=bbox,
38
- category_id=int(category_id),
39
- score=score,
40
- category_name=category_name,
41
- )
42
- object_prediction_list.append(object_prediction)
43
-
44
- image = read_image(image)
45
- output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
46
- return output_image['image']
47
-
48
-
49
- inputs = [
50
- gr.inputs.Image(type="filepath", label="Input Image"),
51
- gr.inputs.Dropdown(["aijack/yv8/yv8n.pt", "aijack/yv8/yv8m.pt","aijack/yv8/yv8x.pt"],
52
- default="aijack/yv8/blob/main/yv8m.pt", label="Model"),
53
- gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
54
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
55
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
56
- ]
57
-
58
- outputs = gr.outputs.Image(type="filepath", label="Output Image")
59
- title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
60
-
61
- examples = [['test1.jpg', 'aijack/yv8/blob/main/yv8m.pt', 640, 0.25, 0.45], ['test2.jpeg', 'aijack/yv8/yv8x.pt', 1280, 0.25, 0.45]]
62
- demo_app = gr.Interface(
63
- fn=yolov8_go,
64
- inputs=inputs,
65
- outputs=outputs,
66
- title=title,
67
- examples=examples,
68
- cache_examples=True,
69
- theme='huggingface',
70
- )
71
- demo_app.launch(debug=True, enable_queue=True)