| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from utils.math import truncated_normal_ | |
| class Downsample2D(nn.Module): | |
| def __init__(self, mode='nearest', scale=4): | |
| super().__init__() | |
| self.mode = mode | |
| self.scale = scale | |
| def forward(self, x): | |
| n, c, h, w = x.size() | |
| x = F.interpolate(x, | |
| size=(h // self.scale + 1, w // self.scale + 1), | |
| mode=self.mode) | |
| return x | |
| def generate_coord(x): | |
| _, _, h, w = x.size() | |
| device = x.device | |
| col = torch.arange(0, h, device=device) | |
| row = torch.arange(0, w, device=device) | |
| grid_h, grid_w = torch.meshgrid(col, row) | |
| return grid_h, grid_w | |
| class PositionEmbeddingSine(nn.Module): | |
| def __init__(self, | |
| num_pos_feats=64, | |
| temperature=10000, | |
| normalize=False, | |
| scale=None): | |
| super().__init__() | |
| self.num_pos_feats = num_pos_feats | |
| self.temperature = temperature | |
| self.normalize = normalize | |
| if scale is not None and normalize is False: | |
| raise ValueError("normalize should be True if scale is passed") | |
| if scale is None: | |
| scale = 2 * math.pi | |
| self.scale = scale | |
| def forward(self, x): | |
| grid_y, grid_x = generate_coord(x) | |
| y_embed = grid_y.unsqueeze(0).float() | |
| x_embed = grid_x.unsqueeze(0).float() | |
| if self.normalize: | |
| eps = 1e-6 | |
| y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
| x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
| dim_t = torch.arange(self.num_pos_feats, | |
| dtype=torch.float32, | |
| device=x.device) | |
| dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) | |
| pos_x = x_embed[:, :, :, None] / dim_t | |
| pos_y = y_embed[:, :, :, None] / dim_t | |
| pos_x = torch.stack( | |
| (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), | |
| dim=4).flatten(3) | |
| pos_y = torch.stack( | |
| (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), | |
| dim=4).flatten(3) | |
| pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
| return pos | |
| class PositionEmbeddingLearned(nn.Module): | |
| def __init__(self, num_pos_feats=64, H=30, W=30): | |
| super().__init__() | |
| self.H = H | |
| self.W = W | |
| self.pos_emb = nn.Parameter( | |
| truncated_normal_(torch.zeros(1, num_pos_feats, H, W))) | |
| def forward(self, x): | |
| bs, _, h, w = x.size() | |
| pos_emb = self.pos_emb | |
| if h != self.H or w != self.W: | |
| pos_emb = F.interpolate(pos_emb, size=(h, w), mode="bilinear") | |
| return pos_emb | |