Spaces:
Runtime error
Runtime error
| import math | |
| import torch.nn as nn | |
| from utils.learning import freeze_params | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, | |
| inplanes, | |
| planes, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| BatchNorm=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = BatchNorm(planes) | |
| self.conv2 = nn.Conv2d(planes, | |
| planes, | |
| kernel_size=3, | |
| stride=stride, | |
| dilation=dilation, | |
| padding=dilation, | |
| bias=False) | |
| self.bn2 = BatchNorm(planes) | |
| self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
| self.bn3 = BatchNorm(planes * 4) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.dilation = dilation | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class ResNet(nn.Module): | |
| def __init__(self, block, layers, output_stride, BatchNorm, freeze_at=0): | |
| self.inplanes = 64 | |
| super(ResNet, self).__init__() | |
| if output_stride == 16: | |
| strides = [1, 2, 2, 1] | |
| dilations = [1, 1, 1, 2] | |
| elif output_stride == 8: | |
| strides = [1, 2, 1, 1] | |
| dilations = [1, 1, 2, 4] | |
| else: | |
| raise NotImplementedError | |
| # Modules | |
| self.conv1 = nn.Conv2d(3, | |
| 64, | |
| kernel_size=7, | |
| stride=2, | |
| padding=3, | |
| bias=False) | |
| self.bn1 = BatchNorm(64) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(block, | |
| 64, | |
| layers[0], | |
| stride=strides[0], | |
| dilation=dilations[0], | |
| BatchNorm=BatchNorm) | |
| self.layer2 = self._make_layer(block, | |
| 128, | |
| layers[1], | |
| stride=strides[1], | |
| dilation=dilations[1], | |
| BatchNorm=BatchNorm) | |
| self.layer3 = self._make_layer(block, | |
| 256, | |
| layers[2], | |
| stride=strides[2], | |
| dilation=dilations[2], | |
| BatchNorm=BatchNorm) | |
| # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) | |
| self.stem = [self.conv1, self.bn1] | |
| self.stages = [self.layer1, self.layer2, self.layer3] | |
| self._init_weight() | |
| self.freeze(freeze_at) | |
| def _make_layer(self, | |
| block, | |
| planes, | |
| blocks, | |
| stride=1, | |
| dilation=1, | |
| BatchNorm=None): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| BatchNorm(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block(self.inplanes, planes, stride, max(dilation // 2, 1), | |
| downsample, BatchNorm)) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append( | |
| block(self.inplanes, | |
| planes, | |
| dilation=dilation, | |
| BatchNorm=BatchNorm)) | |
| return nn.Sequential(*layers) | |
| def forward(self, input): | |
| x = self.conv1(input) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| xs = [] | |
| x = self.layer1(x) | |
| xs.append(x) # 4X | |
| x = self.layer2(x) | |
| xs.append(x) # 8X | |
| x = self.layer3(x) | |
| xs.append(x) # 16X | |
| # Following STMVOS, we drop stage 5. | |
| xs.append(x) # 16X | |
| return xs | |
| def _init_weight(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| m.weight.data.normal_(0, math.sqrt(2. / n)) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| m.weight.data.fill_(1) | |
| m.bias.data.zero_() | |
| def freeze(self, freeze_at): | |
| if freeze_at >= 1: | |
| for m in self.stem: | |
| freeze_params(m) | |
| for idx, stage in enumerate(self.stages, start=2): | |
| if freeze_at >= idx: | |
| freeze_params(stage) | |
| def ResNet50(output_stride, BatchNorm, freeze_at=0): | |
| """Constructs a ResNet-50 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(Bottleneck, [3, 4, 6, 3], | |
| output_stride, | |
| BatchNorm, | |
| freeze_at=freeze_at) | |
| return model | |
| def ResNet101(output_stride, BatchNorm, freeze_at=0): | |
| """Constructs a ResNet-101 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(Bottleneck, [3, 4, 23, 3], | |
| output_stride, | |
| BatchNorm, | |
| freeze_at=freeze_at) | |
| return model | |
| if __name__ == "__main__": | |
| import torch | |
| model = ResNet101(BatchNorm=nn.BatchNorm2d, output_stride=8) | |
| input = torch.rand(1, 3, 512, 512) | |
| output, low_level_feat = model(input) | |
| print(output.size()) | |
| print(low_level_feat.size()) | |