Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,36 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
accuracy_classifier = pipeline(task="audio-classification", model="JohnJumon/pronunciation_accuracy")
|
| 6 |
fluency_classifier = pipeline(task="audio-classification", model="JohnJumon/fluency_accuracy")
|
| 7 |
prosodic_classifier = pipeline(task="audio-classification", model="JohnJumon/prosodic_accuracy")
|
| 8 |
|
| 9 |
def pronunciation_scoring(audio):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
result = {
|
| 17 |
'accuracy': accuracy,
|
| 18 |
'fluency': fluency,
|
|
@@ -21,13 +39,24 @@ def pronunciation_scoring(audio):
|
|
| 21 |
for category, scores in result.items():
|
| 22 |
max_score_label = max(scores, key=lambda x: x['score'])['label']
|
| 23 |
result[category] = max_score_label
|
| 24 |
-
return result
|
| 25 |
|
| 26 |
gradio_app = gr.Interface(
|
| 27 |
pronunciation_scoring,
|
| 28 |
-
inputs=gr.Audio(sources=
|
| 29 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
title="Pronunciation Scoring",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
)
|
| 32 |
|
| 33 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
import numpy as np
|
| 4 |
+
import os
|
| 5 |
|
| 6 |
accuracy_classifier = pipeline(task="audio-classification", model="JohnJumon/pronunciation_accuracy")
|
| 7 |
fluency_classifier = pipeline(task="audio-classification", model="JohnJumon/fluency_accuracy")
|
| 8 |
prosodic_classifier = pipeline(task="audio-classification", model="JohnJumon/prosodic_accuracy")
|
| 9 |
|
| 10 |
def pronunciation_scoring(audio):
|
| 11 |
+
accuracy_description = {
|
| 12 |
+
'Extremely Poor': 'Extremely poor pronunciation and only one or two words are recognizable',
|
| 13 |
+
'Poor': 'Poor, clumsy and rigid pronunciation of the sentence as a whole, with serious pronunciation mistakes',
|
| 14 |
+
'Average': 'The overall pronunciation of the sentence is understandable, with many pronunciation mistakes and accent, but it does not affect the understanding of basic meanings',
|
| 15 |
+
'Good': 'The overall pronunciation of the sentence is good, with a few pronunciation mistakes',
|
| 16 |
+
'Excellent': 'The overall pronunciation of the sentence is excellent, with accurate phonology and no obvious pronunciation mistakes'
|
| 17 |
+
}
|
| 18 |
+
fluency_description = {
|
| 19 |
+
'Very Influent': 'Intermittent, very influent speech, with lots of pauses, repetition, and stammering',
|
| 20 |
+
'Influent': 'The speech is a little influent, with many pauses, repetition, and stammering',
|
| 21 |
+
'Average': 'Fluent in general, with a few pauses, repetition, and stammering',
|
| 22 |
+
'Fluent': 'Fluent without noticeable pauses or stammering'
|
| 23 |
+
}
|
| 24 |
+
prosodic_description = {
|
| 25 |
+
'Poor': 'Poor intonation and lots of stammering and pauses, unable to read a complete sentence',
|
| 26 |
+
'Unstable': 'Unstable speech speed, speak too fast or too slow, without the sense of rhythm',
|
| 27 |
+
'Stable': 'Unstable speech speed, many stammering and pauses with a poor sense of rhythm',
|
| 28 |
+
'Almost': 'Nearly correct intonation at a stable speaking speed, nearly smooth and coherent, but with little stammering and few pauses',
|
| 29 |
+
'Perfect': 'Correct intonation at a stable speaking speed, speak with cadence, and can speak like a native'
|
| 30 |
+
}
|
| 31 |
+
accuracy = accuracy_classifier(audio)
|
| 32 |
+
fluency = fluency_classifier(audio)
|
| 33 |
+
prosodic = prosodic_classifier(audio)
|
| 34 |
result = {
|
| 35 |
'accuracy': accuracy,
|
| 36 |
'fluency': fluency,
|
|
|
|
| 39 |
for category, scores in result.items():
|
| 40 |
max_score_label = max(scores, key=lambda x: x['score'])['label']
|
| 41 |
result[category] = max_score_label
|
| 42 |
+
return result['accuracy'], accuracy_description[result['accuracy']], result['fluency'], fluency_description[result['fluency']], result['prosodic'], prosodic_description[result['prosodic']]
|
| 43 |
|
| 44 |
gradio_app = gr.Interface(
|
| 45 |
pronunciation_scoring,
|
| 46 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
| 47 |
+
outputs=[
|
| 48 |
+
gr.Label(label="Accuracy Result"),
|
| 49 |
+
gr.Textbox(interactive=False, show_label=False),
|
| 50 |
+
gr.Label(label="Fluency Result"),
|
| 51 |
+
gr.Textbox(interactive=False, show_label=False),
|
| 52 |
+
gr.Label(label="Prosodic Result"),
|
| 53 |
+
gr.Textbox(interactive=False, show_label=False)
|
| 54 |
+
],
|
| 55 |
title="Pronunciation Scoring",
|
| 56 |
+
description="This app will score your pronunciation accuracy, fluency, and prosodic (intonation)",
|
| 57 |
+
examples=[
|
| 58 |
+
[os.path.join(os.path.dirname(__file__),"audio.wav")],
|
| 59 |
+
]
|
| 60 |
)
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|