Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,65 +1,235 @@
|
|
1 |
-
# main.py
|
2 |
-
from fastapi import FastAPI, File, UploadFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
4 |
-
from transformers.image_utils import load_image
|
5 |
import torch
|
6 |
from io import BytesIO
|
7 |
import os
|
8 |
from dotenv import load_dotenv
|
9 |
from PIL import Image
|
10 |
-
|
11 |
from huggingface_hub import login
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
15 |
|
16 |
# Set the cache directory to a writable path
|
17 |
os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"
|
18 |
-
|
19 |
token = os.getenv("huggingface_ankit")
|
|
|
20 |
# Login to the Hugging Face Hub
|
21 |
login(token)
|
22 |
|
23 |
app = FastAPI()
|
24 |
|
25 |
-
|
26 |
-
model =
|
27 |
-
processor =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def predict(image):
|
|
|
|
|
|
|
|
|
30 |
prompt = "<image> ocr"
|
31 |
-
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
with torch.inference_mode():
|
34 |
generation = model.generate(**model_inputs, max_new_tokens=200)
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return decoded
|
38 |
|
39 |
@app.post("/extract_text")
|
40 |
-
async def extract_text(file: UploadFile = File(...)):
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
@app.post("/batch_extract_text")
|
46 |
-
async def batch_extract_text(files:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # main.py
|
2 |
+
# from fastapi import FastAPI, File, UploadFile
|
3 |
+
# from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
4 |
+
# from transformers.image_utils import load_image
|
5 |
+
# import torch
|
6 |
+
# from io import BytesIO
|
7 |
+
# import os
|
8 |
+
# from dotenv import load_dotenv
|
9 |
+
# from PIL import Image
|
10 |
+
|
11 |
+
# from huggingface_hub import login
|
12 |
+
|
13 |
+
# # Load environment variables
|
14 |
+
# load_dotenv()
|
15 |
+
|
16 |
+
# # Set the cache directory to a writable path
|
17 |
+
# os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"
|
18 |
+
|
19 |
+
# token = os.getenv("huggingface_ankit")
|
20 |
+
# # Login to the Hugging Face Hub
|
21 |
+
# login(token)
|
22 |
+
|
23 |
+
# app = FastAPI()
|
24 |
+
|
25 |
+
# model_id = "google/paligemma2-3b-mix-448"
|
26 |
+
# model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to('cuda')
|
27 |
+
# processor = PaliGemmaProcessor.from_pretrained(model_id)
|
28 |
+
|
29 |
+
# def predict(image):
|
30 |
+
# prompt = "<image> ocr"
|
31 |
+
# model_inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda')
|
32 |
+
# input_len = model_inputs["input_ids"].shape[-1]
|
33 |
+
# with torch.inference_mode():
|
34 |
+
# generation = model.generate(**model_inputs, max_new_tokens=200)
|
35 |
+
# torch.cuda.empty_cache()
|
36 |
+
# decoded = processor.decode(generation[0], skip_special_tokens=True) #[len(prompt):].lstrip("\n")
|
37 |
+
# return decoded
|
38 |
+
|
39 |
+
# @app.post("/extract_text")
|
40 |
+
# async def extract_text(file: UploadFile = File(...)):
|
41 |
+
# image = Image.open(BytesIO(await file.read())).convert("RGB") # Ensure it's a valid PIL image
|
42 |
+
# text = predict(image)
|
43 |
+
# return {"extracted_text": text}
|
44 |
+
|
45 |
+
# @app.post("/batch_extract_text")
|
46 |
+
# async def batch_extract_text(files: list[UploadFile] = File(...)):
|
47 |
+
# # if len(files) > 20:
|
48 |
+
# # return {"error": "A maximum of 20 images can be processed at a time."}
|
49 |
+
|
50 |
+
# images = [Image.open(BytesIO(await file.read())).convert("RGB") for file in files]
|
51 |
+
# prompts = ["OCR"] * len(images)
|
52 |
+
|
53 |
+
# model_inputs = processor(text=prompts, images=images, return_tensors="pt").to(torch.bfloat16).to(model.device)
|
54 |
+
# input_len = model_inputs["input_ids"].shape[-1]
|
55 |
+
|
56 |
+
# with torch.inference_mode():
|
57 |
+
# generations = model.generate(**model_inputs, max_new_tokens=200, do_sample=False)
|
58 |
+
# torch.cuda.empty_cache()
|
59 |
+
# extracted_texts = [processor.decode(generations[i], skip_special_tokens=True) for i in range(len(images))]
|
60 |
+
|
61 |
+
# return {"extracted_texts": extracted_texts}
|
62 |
+
|
63 |
+
# if __name__ == "__main__":
|
64 |
+
# import uvicorn
|
65 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
66 |
+
|
67 |
+
|
68 |
+
from fastapi import FastAPI, File, UploadFile, BackgroundTasks
|
69 |
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
|
|
70 |
import torch
|
71 |
from io import BytesIO
|
72 |
import os
|
73 |
from dotenv import load_dotenv
|
74 |
from PIL import Image
|
|
|
75 |
from huggingface_hub import login
|
76 |
+
import gc
|
77 |
+
import logging
|
78 |
+
from typing import List
|
79 |
+
import time
|
80 |
+
|
81 |
+
# Configure logging
|
82 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
83 |
+
logger = logging.getLogger(__name__)
|
84 |
|
85 |
# Load environment variables
|
86 |
load_dotenv()
|
87 |
|
88 |
# Set the cache directory to a writable path
|
89 |
os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"
|
|
|
90 |
token = os.getenv("huggingface_ankit")
|
91 |
+
|
92 |
# Login to the Hugging Face Hub
|
93 |
login(token)
|
94 |
|
95 |
app = FastAPI()
|
96 |
|
97 |
+
# Global variables for model and processor
|
98 |
+
model = None
|
99 |
+
processor = None
|
100 |
+
|
101 |
+
def load_model():
|
102 |
+
"""Load model and processor when needed"""
|
103 |
+
global model, processor
|
104 |
+
if model is None:
|
105 |
+
model_id = "google/paligemma2-3b-mix-448"
|
106 |
+
logger.info(f"Loading model {model_id}")
|
107 |
+
|
108 |
+
# Load model with memory-efficient settings
|
109 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
110 |
+
model_id,
|
111 |
+
device_map="auto",
|
112 |
+
torch_dtype=torch.bfloat16 # Use lower precision for memory efficiency
|
113 |
+
)
|
114 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
115 |
+
logger.info("Model loaded successfully")
|
116 |
+
|
117 |
+
def clean_memory():
|
118 |
+
"""Force garbage collection and clear CUDA cache"""
|
119 |
+
gc.collect()
|
120 |
+
if torch.cuda.is_available():
|
121 |
+
torch.cuda.empty_cache()
|
122 |
+
logger.info("Memory cleaned")
|
123 |
|
124 |
def predict(image):
|
125 |
+
"""Process a single image"""
|
126 |
+
load_model() # Ensure model is loaded
|
127 |
+
|
128 |
+
# Process input
|
129 |
prompt = "<image> ocr"
|
130 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
131 |
+
|
132 |
+
# Move to appropriate device
|
133 |
+
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
134 |
+
|
135 |
+
# Generate with memory optimization
|
136 |
with torch.inference_mode():
|
137 |
generation = model.generate(**model_inputs, max_new_tokens=200)
|
138 |
+
|
139 |
+
# Decode output
|
140 |
+
decoded = processor.decode(generation[0], skip_special_tokens=True)
|
141 |
+
|
142 |
+
# Clean up intermediates
|
143 |
+
del model_inputs, generation
|
144 |
+
clean_memory()
|
145 |
+
|
146 |
return decoded
|
147 |
|
148 |
@app.post("/extract_text")
|
149 |
+
async def extract_text(file: UploadFile = File(...), background_tasks: BackgroundTasks):
|
150 |
+
"""Extract text from a single image"""
|
151 |
+
try:
|
152 |
+
start_time = time.time()
|
153 |
+
image = Image.open(BytesIO(await file.read())).convert("RGB")
|
154 |
+
text = predict(image)
|
155 |
+
|
156 |
+
# Schedule cleanup after response
|
157 |
+
background_tasks.add_task(clean_memory)
|
158 |
+
|
159 |
+
logger.info(f"Processing completed in {time.time() - start_time:.2f} seconds")
|
160 |
+
return {"extracted_text": text}
|
161 |
+
except Exception as e:
|
162 |
+
logger.error(f"Error processing image: {str(e)}")
|
163 |
+
return {"error": str(e)}
|
164 |
|
165 |
@app.post("/batch_extract_text")
|
166 |
+
async def batch_extract_text(files: List[UploadFile] = File(...), background_tasks: BackgroundTasks):
|
167 |
+
"""Extract text from multiple images with batching"""
|
168 |
+
try:
|
169 |
+
start_time = time.time()
|
170 |
+
|
171 |
+
# Limit batch size for memory management
|
172 |
+
max_batch_size = 5 # Adjust based on your GPU memory
|
173 |
+
|
174 |
+
if len(files) > 20:
|
175 |
+
return {"error": "A maximum of 20 images can be processed at a time."}
|
176 |
+
|
177 |
+
load_model() # Ensure model is loaded
|
178 |
+
|
179 |
+
all_results = []
|
180 |
+
|
181 |
+
# Process in smaller batches
|
182 |
+
for i in range(0, len(files), max_batch_size):
|
183 |
+
batch_files = files[i:i+max_batch_size]
|
184 |
+
|
185 |
+
# Load images
|
186 |
+
images = []
|
187 |
+
for file in batch_files:
|
188 |
+
image_data = await file.read()
|
189 |
+
img = Image.open(BytesIO(image_data)).convert("RGB")
|
190 |
+
images.append(img)
|
191 |
+
|
192 |
+
# Create batch inputs
|
193 |
+
prompts = ["<image> ocr"] * len(images)
|
194 |
+
model_inputs = processor(text=prompts, images=images, return_tensors="pt")
|
195 |
+
|
196 |
+
# Move to appropriate device
|
197 |
+
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
198 |
+
|
199 |
+
# Generate with memory optimization
|
200 |
+
with torch.inference_mode():
|
201 |
+
generations = model.generate(**model_inputs, max_new_tokens=200, do_sample=False)
|
202 |
+
|
203 |
+
# Decode outputs
|
204 |
+
batch_results = [processor.decode(generations[i], skip_special_tokens=True) for i in range(len(images))]
|
205 |
+
all_results.extend(batch_results)
|
206 |
+
|
207 |
+
# Clean up batch resources
|
208 |
+
del model_inputs, generations, images
|
209 |
+
clean_memory()
|
210 |
+
|
211 |
+
# Schedule cleanup after response
|
212 |
+
background_tasks.add_task(clean_memory)
|
213 |
+
|
214 |
+
logger.info(f"Batch processing completed in {time.time() - start_time:.2f} seconds")
|
215 |
+
return {"extracted_texts": all_results}
|
216 |
+
except Exception as e:
|
217 |
+
logger.error(f"Error in batch processing: {str(e)}")
|
218 |
+
return {"error": str(e)}
|
219 |
+
|
220 |
+
# Health check endpoint
|
221 |
+
@app.get("/health")
|
222 |
+
async def health_check():
|
223 |
+
return {"status": "healthy"}
|
224 |
+
|
225 |
+
# if __name__ == "__main__":
|
226 |
+
# import uvicorn
|
227 |
|
228 |
+
# # Start the server with proper worker configuration
|
229 |
+
# uvicorn.run(
|
230 |
+
# app,
|
231 |
+
# host="0.0.0.0",
|
232 |
+
# port=7860,
|
233 |
+
# log_level="info",
|
234 |
+
# workers=1 # Multiple workers can cause GPU memory issues
|
235 |
+
# )
|