Spaces:
Sleeping
Sleeping
Create embeddingsProcessor.py
Browse files- embeddingsProcessor.py +34 -0
embeddingsProcessor.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
from transformers import AutoTokenizer, AutoModel
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
class EmbeddingsProcessor:
|
| 8 |
+
"""
|
| 9 |
+
Class for processing text to obtain embeddings using a transformer model.
|
| 10 |
+
"""
|
| 11 |
+
def __init__(self, model_name: str):
|
| 12 |
+
"""
|
| 13 |
+
Initialize the EmbeddingsProcessor with a pre-trained model.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
model_name (str): The name of the pre-trained model to use for generating embeddings.
|
| 17 |
+
"""
|
| 18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 19 |
+
self.model = AutoModel.from_pretrained(model_name).to('cpu') # Change 'cuda' to 'cpu'
|
| 20 |
+
|
| 21 |
+
def get_embeddings(self, texts: List[str]) -> np.ndarray:
|
| 22 |
+
"""
|
| 23 |
+
Generate embeddings for a list of texts.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
texts (List[str]): A list of text strings for which to generate embeddings.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
np.ndarray: A NumPy array of embeddings for the provided texts.
|
| 30 |
+
"""
|
| 31 |
+
encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
| 32 |
+
encoded_input = {k: v.to('cpu') for k, v in encoded_input.items()} # Ensure all tensors are on CPU
|
| 33 |
+
model_output = self.model(**encoded_input)
|
| 34 |
+
return model_output.last_hidden_state.mean(dim=1).detach().numpy()
|