Delete app.py
Browse files
app.py
DELETED
@@ -1,498 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
os.environ['CUDA_HOME'] = '/usr/local/cuda'
|
4 |
-
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
|
5 |
-
from datetime import datetime
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
import spaces
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
from diffusers.image_processor import VaeImageProcessor
|
12 |
-
from huggingface_hub import snapshot_download
|
13 |
-
from PIL import Image
|
14 |
-
torch.jit.script = lambda f: f
|
15 |
-
from model.cloth_masker import AutoMasker, vis_mask
|
16 |
-
from model.pipeline import CatVTONPipeline
|
17 |
-
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
18 |
-
|
19 |
-
def parse_args():
|
20 |
-
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
21 |
-
parser.add_argument(
|
22 |
-
"--base_model_path",
|
23 |
-
type=str,
|
24 |
-
default="booksforcharlie/stable-diffusion-inpainting",
|
25 |
-
help=(
|
26 |
-
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
|
27 |
-
),
|
28 |
-
)
|
29 |
-
parser.add_argument(
|
30 |
-
"--resume_path",
|
31 |
-
type=str,
|
32 |
-
default="zhengchong/CatVTON",
|
33 |
-
help=(
|
34 |
-
"The Path to the checkpoint of trained tryon model."
|
35 |
-
),
|
36 |
-
)
|
37 |
-
parser.add_argument(
|
38 |
-
"--output_dir",
|
39 |
-
type=str,
|
40 |
-
default="resource/demo/output",
|
41 |
-
help="The output directory where the model predictions will be written.",
|
42 |
-
)
|
43 |
-
parser.add_argument(
|
44 |
-
"--width",
|
45 |
-
type=int,
|
46 |
-
default=768,
|
47 |
-
help=(
|
48 |
-
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
49 |
-
" resolution"
|
50 |
-
),
|
51 |
-
)
|
52 |
-
parser.add_argument(
|
53 |
-
"--height",
|
54 |
-
type=int,
|
55 |
-
default=1024,
|
56 |
-
help=(
|
57 |
-
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
58 |
-
" resolution"
|
59 |
-
),
|
60 |
-
)
|
61 |
-
parser.add_argument(
|
62 |
-
"--repaint",
|
63 |
-
action="store_true",
|
64 |
-
help="Whether to repaint the result image with the original background."
|
65 |
-
)
|
66 |
-
parser.add_argument(
|
67 |
-
"--allow_tf32",
|
68 |
-
action="store_true",
|
69 |
-
default=True,
|
70 |
-
help=(
|
71 |
-
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
72 |
-
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
73 |
-
),
|
74 |
-
)
|
75 |
-
parser.add_argument(
|
76 |
-
"--mixed_precision",
|
77 |
-
type=str,
|
78 |
-
default="bf16",
|
79 |
-
choices=["no", "fp16", "bf16"],
|
80 |
-
help=(
|
81 |
-
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
82 |
-
" 1.10 and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
83 |
-
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
84 |
-
),
|
85 |
-
)
|
86 |
-
|
87 |
-
args = parser.parse_args()
|
88 |
-
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
89 |
-
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
90 |
-
args.local_rank = env_local_rank
|
91 |
-
|
92 |
-
return args
|
93 |
-
|
94 |
-
def image_grid(imgs, rows, cols):
|
95 |
-
assert len(imgs) == rows * cols
|
96 |
-
|
97 |
-
w, h = imgs[0].size
|
98 |
-
grid = Image.new("RGB", size=(cols * w, rows * h))
|
99 |
-
|
100 |
-
for i, img in enumerate(imgs):
|
101 |
-
grid.paste(img, box=(i % cols * w, i // cols * h))
|
102 |
-
return grid
|
103 |
-
|
104 |
-
args = parse_args()
|
105 |
-
repo_path = snapshot_download(repo_id=args.resume_path)
|
106 |
-
|
107 |
-
# Pipeline
|
108 |
-
pipeline = CatVTONPipeline(
|
109 |
-
base_ckpt=args.base_model_path,
|
110 |
-
attn_ckpt=repo_path,
|
111 |
-
attn_ckpt_version="mix",
|
112 |
-
weight_dtype=init_weight_dtype(args.mixed_precision),
|
113 |
-
use_tf32=args.allow_tf32,
|
114 |
-
device='cuda'
|
115 |
-
)
|
116 |
-
|
117 |
-
# AutoMasker
|
118 |
-
mask_processor = VaeImageProcessor(
|
119 |
-
vae_scale_factor=8,
|
120 |
-
do_normalize=False,
|
121 |
-
do_binarize=True,
|
122 |
-
do_convert_grayscale=True
|
123 |
-
)
|
124 |
-
automasker = AutoMasker(
|
125 |
-
densepose_ckpt=os.path.join(repo_path, "DensePose"),
|
126 |
-
schp_ckpt=os.path.join(repo_path, "SCHP"),
|
127 |
-
device='cuda',
|
128 |
-
)
|
129 |
-
|
130 |
-
@spaces.GPU(duration=120)
|
131 |
-
def submit_function(
|
132 |
-
person_image,
|
133 |
-
cloth_image,
|
134 |
-
cloth_type,
|
135 |
-
num_inference_steps,
|
136 |
-
guidance_scale,
|
137 |
-
seed,
|
138 |
-
show_type
|
139 |
-
):
|
140 |
-
# person_image 객체에서 background와 layers[0]을 분리
|
141 |
-
person_image, mask = person_image["background"], person_image["layers"][0]
|
142 |
-
mask = Image.open(mask).convert("L")
|
143 |
-
|
144 |
-
# 만약 마스크가 전부 0(검정)이면 None 처리
|
145 |
-
if len(np.unique(np.array(mask))) == 1:
|
146 |
-
mask = None
|
147 |
-
else:
|
148 |
-
mask = np.array(mask)
|
149 |
-
mask[mask > 0] = 255
|
150 |
-
mask = Image.fromarray(mask)
|
151 |
-
|
152 |
-
tmp_folder = args.output_dir
|
153 |
-
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
154 |
-
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
|
155 |
-
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
|
156 |
-
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
|
157 |
-
|
158 |
-
generator = None
|
159 |
-
if seed != -1:
|
160 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
161 |
-
|
162 |
-
person_image = Image.open(person_image).convert("RGB")
|
163 |
-
cloth_image = Image.open(cloth_image).convert("RGB")
|
164 |
-
person_image = resize_and_crop(person_image, (args.width, args.height))
|
165 |
-
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
166 |
-
|
167 |
-
# If user didn't draw a mask
|
168 |
-
if mask is not None:
|
169 |
-
mask = resize_and_crop(mask, (args.width, args.height))
|
170 |
-
else:
|
171 |
-
mask = automasker(
|
172 |
-
person_image,
|
173 |
-
cloth_type
|
174 |
-
)['mask']
|
175 |
-
mask = mask_processor.blur(mask, blur_factor=9)
|
176 |
-
|
177 |
-
# Inference
|
178 |
-
result_image = pipeline(
|
179 |
-
image=person_image,
|
180 |
-
condition_image=cloth_image,
|
181 |
-
mask=mask,
|
182 |
-
num_inference_steps=num_inference_steps,
|
183 |
-
guidance_scale=guidance_scale,
|
184 |
-
generator=generator
|
185 |
-
)[0]
|
186 |
-
|
187 |
-
# Post-process & Save
|
188 |
-
masked_person = vis_mask(person_image, mask)
|
189 |
-
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
|
190 |
-
save_result_image.save(result_save_path)
|
191 |
-
|
192 |
-
if show_type == "result only":
|
193 |
-
return result_image
|
194 |
-
else:
|
195 |
-
width, height = person_image.size
|
196 |
-
if show_type == "input & result":
|
197 |
-
condition_width = width // 2
|
198 |
-
conditions = image_grid([person_image, cloth_image], 2, 1)
|
199 |
-
else:
|
200 |
-
condition_width = width // 3
|
201 |
-
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
|
202 |
-
|
203 |
-
conditions = conditions.resize((condition_width, height), Image.NEAREST)
|
204 |
-
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
|
205 |
-
new_result_image.paste(conditions, (0, 0))
|
206 |
-
new_result_image.paste(result_image, (condition_width + 5, 0))
|
207 |
-
return new_result_image
|
208 |
-
|
209 |
-
def person_example_fn(image_path):
|
210 |
-
return image_path
|
211 |
-
|
212 |
-
# Custom CSS
|
213 |
-
css = """
|
214 |
-
footer {visibility: hidden}
|
215 |
-
|
216 |
-
/* Main container styling */
|
217 |
-
.gradio-container {
|
218 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
219 |
-
border-radius: 20px;
|
220 |
-
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
|
221 |
-
}
|
222 |
-
|
223 |
-
/* Header styling */
|
224 |
-
h1, h2, h3 {
|
225 |
-
color: #2c3e50;
|
226 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
227 |
-
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
|
228 |
-
}
|
229 |
-
|
230 |
-
/* Button styling */
|
231 |
-
button.primary-button {
|
232 |
-
background: linear-gradient(45deg, #4CAF50, #45a049);
|
233 |
-
border: none;
|
234 |
-
border-radius: 10px;
|
235 |
-
color: white;
|
236 |
-
padding: 12px 24px;
|
237 |
-
font-weight: bold;
|
238 |
-
transition: all 0.3s ease;
|
239 |
-
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
|
240 |
-
}
|
241 |
-
|
242 |
-
button.primary-button:hover {
|
243 |
-
transform: translateY(-2px);
|
244 |
-
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4);
|
245 |
-
}
|
246 |
-
|
247 |
-
/* Image container styling */
|
248 |
-
.image-container {
|
249 |
-
border-radius: 15px;
|
250 |
-
overflow: hidden;
|
251 |
-
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
|
252 |
-
transition: transform 0.3s ease;
|
253 |
-
}
|
254 |
-
|
255 |
-
.image-container:hover {
|
256 |
-
transform: scale(1.02);
|
257 |
-
}
|
258 |
-
|
259 |
-
/* Radio button styling */
|
260 |
-
.radio-group label {
|
261 |
-
background-color: #ffffff;
|
262 |
-
border-radius: 8px;
|
263 |
-
padding: 10px 15px;
|
264 |
-
margin: 5px;
|
265 |
-
cursor: pointer;
|
266 |
-
transition: all 0.3s ease;
|
267 |
-
}
|
268 |
-
|
269 |
-
.radio-group input:checked + label {
|
270 |
-
background-color: #4CAF50;
|
271 |
-
color: white;
|
272 |
-
}
|
273 |
-
|
274 |
-
/* Slider styling */
|
275 |
-
.slider-container {
|
276 |
-
background: white;
|
277 |
-
padding: 15px;
|
278 |
-
border-radius: 10px;
|
279 |
-
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
|
280 |
-
}
|
281 |
-
|
282 |
-
.slider {
|
283 |
-
height: 8px;
|
284 |
-
border-radius: 4px;
|
285 |
-
background: #e0e0e0;
|
286 |
-
}
|
287 |
-
|
288 |
-
.slider .thumb {
|
289 |
-
width: 20px;
|
290 |
-
height: 20px;
|
291 |
-
background: #4CAF50;
|
292 |
-
border-radius: 50%;
|
293 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
294 |
-
}
|
295 |
-
|
296 |
-
/* Alert/warning text styling */
|
297 |
-
.warning-text {
|
298 |
-
color: #ff5252;
|
299 |
-
font-weight: bold;
|
300 |
-
text-align: center;
|
301 |
-
padding: 10px;
|
302 |
-
background: rgba(255,82,82,0.1);
|
303 |
-
border-radius: 8px;
|
304 |
-
margin: 10px 0;
|
305 |
-
}
|
306 |
-
|
307 |
-
/* Example gallery styling */
|
308 |
-
.example-gallery {
|
309 |
-
display: grid;
|
310 |
-
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
|
311 |
-
gap: 15px;
|
312 |
-
padding: 15px;
|
313 |
-
background: white;
|
314 |
-
border-radius: 10px;
|
315 |
-
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
|
316 |
-
}
|
317 |
-
|
318 |
-
.example-item {
|
319 |
-
border-radius: 8px;
|
320 |
-
overflow: hidden;
|
321 |
-
transition: transform 0.3s ease;
|
322 |
-
}
|
323 |
-
|
324 |
-
.example-item:hover {
|
325 |
-
transform: scale(1.05);
|
326 |
-
}
|
327 |
-
"""
|
328 |
-
|
329 |
-
def app_gradio():
|
330 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"), css=css) as demo:
|
331 |
-
gr.Markdown(
|
332 |
-
"""
|
333 |
-
# 👔 Fashion Fit
|
334 |
-
Transform your look with AI-powered virtual clothing try-on!
|
335 |
-
"""
|
336 |
-
)
|
337 |
-
|
338 |
-
with gr.Row():
|
339 |
-
with gr.Column(scale=1, min_width=350):
|
340 |
-
with gr.Group():
|
341 |
-
gr.Markdown("### 📸 Upload Images")
|
342 |
-
with gr.Row():
|
343 |
-
image_path = gr.Image(
|
344 |
-
type="filepath",
|
345 |
-
interactive=True,
|
346 |
-
visible=False,
|
347 |
-
)
|
348 |
-
person_image = gr.ImageEditor(
|
349 |
-
interactive=True,
|
350 |
-
label="Person Image",
|
351 |
-
type="filepath",
|
352 |
-
elem_classes="image-container"
|
353 |
-
)
|
354 |
-
|
355 |
-
with gr.Row():
|
356 |
-
with gr.Column(scale=1, min_width=230):
|
357 |
-
cloth_image = gr.Image(
|
358 |
-
interactive=True,
|
359 |
-
label="Clothing Item",
|
360 |
-
type="filepath",
|
361 |
-
elem_classes="image-container"
|
362 |
-
)
|
363 |
-
with gr.Column(scale=1, min_width=120):
|
364 |
-
|
365 |
-
cloth_type = gr.Radio(
|
366 |
-
label="Clothing Type",
|
367 |
-
choices=["upper", "lower", "overall"],
|
368 |
-
value="upper",
|
369 |
-
elem_classes="radio-group"
|
370 |
-
)
|
371 |
-
|
372 |
-
submit = gr.Button("🚀 Generate Try-On", elem_classes="primary-button")
|
373 |
-
|
374 |
-
|
375 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
376 |
-
num_inference_steps = gr.Slider(
|
377 |
-
label="Quality Level",
|
378 |
-
minimum=10,
|
379 |
-
maximum=100,
|
380 |
-
step=5,
|
381 |
-
value=50,
|
382 |
-
elem_classes="slider-container"
|
383 |
-
)
|
384 |
-
guidance_scale = gr.Slider(
|
385 |
-
label="Style Strength",
|
386 |
-
minimum=0.0,
|
387 |
-
maximum=7.5,
|
388 |
-
step=0.5,
|
389 |
-
value=2.5,
|
390 |
-
elem_classes="slider-container"
|
391 |
-
)
|
392 |
-
seed = gr.Slider(
|
393 |
-
label="Random Seed",
|
394 |
-
minimum=-1,
|
395 |
-
maximum=10000,
|
396 |
-
step=1,
|
397 |
-
value=42,
|
398 |
-
elem_classes="slider-container"
|
399 |
-
)
|
400 |
-
show_type = gr.Radio(
|
401 |
-
label="Display Mode",
|
402 |
-
choices=["result only", "input & result", "input & mask & result"],
|
403 |
-
value="input & mask & result",
|
404 |
-
elem_classes="radio-group"
|
405 |
-
)
|
406 |
-
|
407 |
-
with gr.Column(scale=2, min_width=500):
|
408 |
-
result_image = gr.Image(
|
409 |
-
interactive=False,
|
410 |
-
label="Final Result",
|
411 |
-
elem_classes="image-container"
|
412 |
-
)
|
413 |
-
with gr.Row():
|
414 |
-
root_path = "resource/demo/example"
|
415 |
-
with gr.Column():
|
416 |
-
gr.Markdown("#### 👤 Model Examples")
|
417 |
-
# elem_classes 인자를 제거해야 오류가 사라집니다.
|
418 |
-
men_exm = gr.Examples(
|
419 |
-
examples=[
|
420 |
-
os.path.join(root_path, "person", "men", file)
|
421 |
-
for file in os.listdir(os.path.join(root_path, "person", "men"))
|
422 |
-
],
|
423 |
-
examples_per_page=4,
|
424 |
-
inputs=image_path,
|
425 |
-
label="Men's Examples"
|
426 |
-
)
|
427 |
-
women_exm = gr.Examples(
|
428 |
-
examples=[
|
429 |
-
os.path.join(root_path, "person", "women", file)
|
430 |
-
for file in os.listdir(os.path.join(root_path, "person", "women"))
|
431 |
-
],
|
432 |
-
examples_per_page=4,
|
433 |
-
inputs=image_path,
|
434 |
-
label="Women's Examples"
|
435 |
-
)
|
436 |
-
gr.Markdown(
|
437 |
-
'<div class="info-text">Model examples courtesy of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a></div>'
|
438 |
-
)
|
439 |
-
|
440 |
-
with gr.Column():
|
441 |
-
gr.Markdown("#### 👕 Clothing Examples")
|
442 |
-
condition_upper_exm = gr.Examples(
|
443 |
-
examples=[
|
444 |
-
os.path.join(root_path, "condition", "upper", file)
|
445 |
-
for file in os.listdir(os.path.join(root_path, "condition", "upper"))
|
446 |
-
],
|
447 |
-
examples_per_page=4,
|
448 |
-
inputs=cloth_image,
|
449 |
-
label="Upper Garments"
|
450 |
-
)
|
451 |
-
condition_overall_exm = gr.Examples(
|
452 |
-
examples=[
|
453 |
-
os.path.join(root_path, "condition", "overall", file)
|
454 |
-
for file in os.listdir(os.path.join(root_path, "condition", "overall"))
|
455 |
-
],
|
456 |
-
examples_per_page=4,
|
457 |
-
inputs=cloth_image,
|
458 |
-
label="Full Outfits"
|
459 |
-
)
|
460 |
-
condition_person_exm = gr.Examples(
|
461 |
-
examples=[
|
462 |
-
os.path.join(root_path, "condition", "person", file)
|
463 |
-
for file in os.listdir(os.path.join(root_path, "condition", "person"))
|
464 |
-
],
|
465 |
-
examples_per_page=4,
|
466 |
-
inputs=cloth_image,
|
467 |
-
label="Reference Styles"
|
468 |
-
)
|
469 |
-
gr.Markdown(
|
470 |
-
'<div class="info-text">Clothing examples sourced from various online retailers</div>'
|
471 |
-
)
|
472 |
-
|
473 |
-
image_path.change(
|
474 |
-
person_example_fn,
|
475 |
-
inputs=image_path,
|
476 |
-
outputs=person_image
|
477 |
-
)
|
478 |
-
|
479 |
-
submit.click(
|
480 |
-
submit_function,
|
481 |
-
[
|
482 |
-
person_image,
|
483 |
-
cloth_image,
|
484 |
-
cloth_type,
|
485 |
-
num_inference_steps,
|
486 |
-
guidance_scale,
|
487 |
-
seed,
|
488 |
-
show_type,
|
489 |
-
],
|
490 |
-
result_image,
|
491 |
-
)
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
demo.queue().launch(share=True, show_error=True)
|
496 |
-
|
497 |
-
if __name__ == "__main__":
|
498 |
-
app_gradio()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|