Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -78,6 +78,9 @@ def visualize(pred_mask, image_path, work_dir):
|
|
| 78 |
|
| 79 |
@spaces.GPU
|
| 80 |
def image_vision(image_input_path, prompt):
|
|
|
|
|
|
|
|
|
|
| 81 |
image_path = image_input_path
|
| 82 |
text_prompts = f"<image>{prompt}"
|
| 83 |
image = Image.open(image_path).convert('RGB')
|
|
@@ -92,9 +95,16 @@ def image_vision(image_input_path, prompt):
|
|
| 92 |
print(return_dict)
|
| 93 |
answer = return_dict["prediction"] # the text format answer
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
seg_image = return_dict["prediction_masks"]
|
| 96 |
|
| 97 |
-
if '[SEG]' in answer and Visualizer is not None:
|
| 98 |
pred_masks = seg_image[0]
|
| 99 |
temp_dir = tempfile.mkdtemp()
|
| 100 |
pred_mask = pred_masks
|
|
@@ -106,19 +116,16 @@ def image_vision(image_input_path, prompt):
|
|
| 106 |
|
| 107 |
@spaces.GPU(duration=80)
|
| 108 |
def video_vision(video_input_path, prompt, video_interval):
|
|
|
|
|
|
|
|
|
|
| 109 |
# Open the original video
|
| 110 |
cap = cv2.VideoCapture(video_input_path)
|
| 111 |
-
|
| 112 |
-
# Get original video properties
|
| 113 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
| 114 |
-
|
| 115 |
frame_skip_factor = video_interval
|
| 116 |
-
|
| 117 |
-
# Calculate new FPS
|
| 118 |
new_fps = original_fps / frame_skip_factor
|
| 119 |
|
| 120 |
vid_frames, image_paths = read_video(video_input_path, video_interval)
|
| 121 |
-
# create a question (<image> is a placeholder for the video frames)
|
| 122 |
question = f"<image>{prompt}"
|
| 123 |
result = model.predict_forward(
|
| 124 |
video=vid_frames,
|
|
@@ -128,7 +135,13 @@ def video_vision(video_input_path, prompt, video_interval):
|
|
| 128 |
prediction = result['prediction']
|
| 129 |
print(prediction)
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
_seg_idx = 0
|
| 133 |
pred_masks = result['prediction_masks'][_seg_idx]
|
| 134 |
seg_frames = []
|
|
@@ -140,29 +153,22 @@ def video_vision(video_input_path, prompt, video_interval):
|
|
| 140 |
seg_frames.append(seg_frame)
|
| 141 |
|
| 142 |
output_video = "output_video.mp4"
|
| 143 |
-
|
| 144 |
-
# Read the first image to get the size (resolution)
|
| 145 |
frame = cv2.imread(seg_frames[0])
|
| 146 |
height, width, layers = frame.shape
|
| 147 |
-
|
| 148 |
-
# Define the video codec and create VideoWriter object
|
| 149 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
|
| 150 |
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
|
| 151 |
|
| 152 |
-
# Iterate over the image paths and write to the video
|
| 153 |
for img_path in seg_frames:
|
| 154 |
frame = cv2.imread(img_path)
|
| 155 |
video.write(frame)
|
| 156 |
|
| 157 |
-
# Release the video writer
|
| 158 |
video.release()
|
| 159 |
-
|
| 160 |
print(f"Video created successfully at {output_video}")
|
| 161 |
|
| 162 |
-
return
|
| 163 |
|
| 164 |
else:
|
| 165 |
-
return
|
| 166 |
|
| 167 |
|
| 168 |
|
|
|
|
| 78 |
|
| 79 |
@spaces.GPU
|
| 80 |
def image_vision(image_input_path, prompt):
|
| 81 |
+
# μ
λ ₯λ ν둬ννΈκ° νκΈμΈμ§ νμΈ
|
| 82 |
+
is_korean = any(ord('κ°') <= ord(char) <= ord('ν£') for char in prompt)
|
| 83 |
+
|
| 84 |
image_path = image_input_path
|
| 85 |
text_prompts = f"<image>{prompt}"
|
| 86 |
image = Image.open(image_path).convert('RGB')
|
|
|
|
| 95 |
print(return_dict)
|
| 96 |
answer = return_dict["prediction"] # the text format answer
|
| 97 |
|
| 98 |
+
# νκΈ ν둬ννΈμΈ κ²½μ° μλ΅μ νκΈλ‘ λ³ν
|
| 99 |
+
if is_korean:
|
| 100 |
+
# κΈ°λ³Έ μλ΅ ν¨ν΄μ νκΈλ‘ λ³ν
|
| 101 |
+
answer = answer.replace("Yes", "λ€")
|
| 102 |
+
answer = answer.replace("No", "μλμ€")
|
| 103 |
+
answer = answer.replace("[SEG]", "[λΆν ]")
|
| 104 |
+
|
| 105 |
seg_image = return_dict["prediction_masks"]
|
| 106 |
|
| 107 |
+
if ('[SEG]' in answer or '[λΆν ]' in answer) and Visualizer is not None:
|
| 108 |
pred_masks = seg_image[0]
|
| 109 |
temp_dir = tempfile.mkdtemp()
|
| 110 |
pred_mask = pred_masks
|
|
|
|
| 116 |
|
| 117 |
@spaces.GPU(duration=80)
|
| 118 |
def video_vision(video_input_path, prompt, video_interval):
|
| 119 |
+
# μ
λ ₯λ ν둬ννΈκ° νκΈμΈμ§ νμΈ
|
| 120 |
+
is_korean = any(ord('κ°') <= ord(char) <= ord('ν£') for char in prompt)
|
| 121 |
+
|
| 122 |
# Open the original video
|
| 123 |
cap = cv2.VideoCapture(video_input_path)
|
|
|
|
|
|
|
| 124 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
| 125 |
frame_skip_factor = video_interval
|
|
|
|
|
|
|
| 126 |
new_fps = original_fps / frame_skip_factor
|
| 127 |
|
| 128 |
vid_frames, image_paths = read_video(video_input_path, video_interval)
|
|
|
|
| 129 |
question = f"<image>{prompt}"
|
| 130 |
result = model.predict_forward(
|
| 131 |
video=vid_frames,
|
|
|
|
| 135 |
prediction = result['prediction']
|
| 136 |
print(prediction)
|
| 137 |
|
| 138 |
+
# νκΈ ν둬ννΈμΈ κ²½μ° μλ΅μ νκΈλ‘ λ³ν
|
| 139 |
+
if is_korean:
|
| 140 |
+
prediction = prediction.replace("Yes", "λ€")
|
| 141 |
+
prediction = prediction.replace("No", "μλμ€")
|
| 142 |
+
prediction = prediction.replace("[SEG]", "[λΆν ]")
|
| 143 |
+
|
| 144 |
+
if ('[SEG]' in prediction or '[λΆν ]' in prediction) and Visualizer is not None:
|
| 145 |
_seg_idx = 0
|
| 146 |
pred_masks = result['prediction_masks'][_seg_idx]
|
| 147 |
seg_frames = []
|
|
|
|
| 153 |
seg_frames.append(seg_frame)
|
| 154 |
|
| 155 |
output_video = "output_video.mp4"
|
|
|
|
|
|
|
| 156 |
frame = cv2.imread(seg_frames[0])
|
| 157 |
height, width, layers = frame.shape
|
| 158 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
|
|
|
|
| 159 |
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
|
| 160 |
|
|
|
|
| 161 |
for img_path in seg_frames:
|
| 162 |
frame = cv2.imread(img_path)
|
| 163 |
video.write(frame)
|
| 164 |
|
|
|
|
| 165 |
video.release()
|
|
|
|
| 166 |
print(f"Video created successfully at {output_video}")
|
| 167 |
|
| 168 |
+
return prediction, output_video
|
| 169 |
|
| 170 |
else:
|
| 171 |
+
return prediction, None
|
| 172 |
|
| 173 |
|
| 174 |
|