|
import streamlit as st |
|
from huggingface_hub import HfApi |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from datetime import datetime |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from functools import lru_cache |
|
import time |
|
|
|
st.set_page_config(page_title="HF Contributions", layout="wide") |
|
api = HfApi() |
|
|
|
|
|
|
|
@lru_cache(maxsize=1000) |
|
def cached_repo_info(repo_id, repo_type): |
|
return api.repo_info(repo_id=repo_id, repo_type=repo_type) |
|
|
|
|
|
@lru_cache(maxsize=1000) |
|
def cached_list_commits(repo_id, repo_type): |
|
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type)) |
|
|
|
|
|
@lru_cache(maxsize=100) |
|
def cached_list_items(username, kind): |
|
if kind == "model": |
|
return list(api.list_models(author=username)) |
|
elif kind == "dataset": |
|
return list(api.list_datasets(author=username)) |
|
elif kind == "space": |
|
return list(api.list_spaces(author=username)) |
|
return [] |
|
|
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def get_trending_accounts(limit=100): |
|
try: |
|
|
|
trending_models = list(api.list_models(sort="trending", limit=limit)) |
|
trending_datasets = list(api.list_datasets(sort="trending", limit=limit)) |
|
trending_spaces = list(api.list_spaces(sort="trending", limit=limit)) |
|
|
|
|
|
authors = set() |
|
for item in trending_models + trending_datasets + trending_spaces: |
|
if hasattr(item, "author"): |
|
authors.add(item.author) |
|
elif hasattr(item, "id") and "/" in item.id: |
|
authors.add(item.id.split("/")[0]) |
|
|
|
|
|
return sorted(list(authors))[:limit] |
|
except Exception as e: |
|
st.error(f"Error fetching trending accounts: {str(e)}") |
|
return ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"] |
|
|
|
|
|
|
|
class RateLimiter: |
|
def __init__(self, calls_per_second=10): |
|
self.calls_per_second = calls_per_second |
|
self.last_call = 0 |
|
|
|
def wait(self): |
|
current_time = time.time() |
|
time_since_last_call = current_time - self.last_call |
|
if time_since_last_call < (1.0 / self.calls_per_second): |
|
time.sleep((1.0 / self.calls_per_second) - time_since_last_call) |
|
self.last_call = time.time() |
|
|
|
|
|
rate_limiter = RateLimiter() |
|
|
|
|
|
|
|
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year): |
|
try: |
|
rate_limiter.wait() |
|
|
|
repo_info = cached_repo_info(repo_id, repo_type) |
|
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated): |
|
return [], [] |
|
|
|
|
|
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date() |
|
commit_dates = [] |
|
commit_count = 0 |
|
|
|
|
|
if initial_commit_date.year == selected_year: |
|
commit_dates.append(initial_commit_date) |
|
commit_count += 1 |
|
|
|
|
|
commits = cached_list_commits(repo_id, repo_type) |
|
for commit in commits: |
|
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date() |
|
if commit_date.year == selected_year: |
|
commit_dates.append(commit_date) |
|
commit_count += 1 |
|
|
|
return commit_dates, commit_count |
|
except Exception: |
|
return [], 0 |
|
|
|
|
|
|
|
def get_commit_events(username, kind=None, selected_year=None): |
|
commit_dates = [] |
|
items_with_type = [] |
|
kinds = [kind] if kind else ["model", "dataset", "space"] |
|
|
|
for k in kinds: |
|
try: |
|
items = cached_list_items(username, k) |
|
items_with_type.extend((item, k) for item in items) |
|
repo_ids = [item.id for item in items] |
|
|
|
|
|
chunk_size = 5 |
|
for i in range(0, len(repo_ids), chunk_size): |
|
chunk = repo_ids[i:i + chunk_size] |
|
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: |
|
future_to_repo = { |
|
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id |
|
for repo_id in chunk |
|
} |
|
for future in as_completed(future_to_repo): |
|
repo_commits, repo_count = future.result() |
|
if repo_commits: |
|
commit_dates.extend(repo_commits) |
|
except Exception as e: |
|
st.warning(f"Error fetching {k}s for {username}: {str(e)}") |
|
|
|
|
|
df = pd.DataFrame(commit_dates, columns=["date"]) |
|
if not df.empty: |
|
df = df.drop_duplicates() |
|
return df, items_with_type |
|
|
|
|
|
|
|
def make_calendar_heatmap(df, title, year): |
|
if df.empty: |
|
st.info(f"No {title.lower()} found for {year}.") |
|
return |
|
|
|
|
|
df["count"] = 1 |
|
df = df.groupby("date", as_index=False).sum() |
|
df["date"] = pd.to_datetime(df["date"]) |
|
|
|
|
|
start = pd.Timestamp(f"{year}-01-01") |
|
end = pd.Timestamp(f"{year}-12-31") |
|
all_days = pd.date_range(start=start, end=end) |
|
|
|
|
|
heatmap_data = pd.DataFrame({"date": all_days, "count": 0}) |
|
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y")) |
|
heatmap_data["count"] = heatmap_data["count_y"].fillna(0) |
|
heatmap_data = heatmap_data.drop("count_y", axis=1) |
|
|
|
|
|
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek |
|
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7 |
|
|
|
|
|
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0) |
|
|
|
|
|
month_labels = pd.date_range(start, end, freq="MS").strftime("%b") |
|
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7) |
|
|
|
|
|
from matplotlib.colors import ListedColormap, BoundaryNorm |
|
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] |
|
bounds = [0, 1, 3, 11, 31, float('inf')] |
|
cmap = ListedColormap(colors) |
|
norm = BoundaryNorm(bounds, cmap.N) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 1.2)) |
|
|
|
|
|
pivot_int = pivot.astype(int) |
|
|
|
|
|
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white", |
|
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"]) |
|
|
|
ax.set_title(f"{title}", fontsize=12, pad=10) |
|
ax.set_xlabel("") |
|
ax.set_ylabel("") |
|
ax.set_xticks(month_positions) |
|
ax.set_xticklabels(month_labels, fontsize=8) |
|
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8) |
|
st.pyplot(fig) |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.title("👤 Contributor") |
|
|
|
|
|
with st.spinner("Loading top trending accounts..."): |
|
trending_accounts = get_trending_accounts(limit=100) |
|
|
|
|
|
tab1, tab2 = st.tabs(["Top 100 Trending", "Custom User"]) |
|
|
|
with tab1: |
|
|
|
st.subheader("🔥 Top Trending Accounts") |
|
search_filter = st.text_input("Filter accounts", key="trending_filter") |
|
|
|
|
|
filtered_accounts = [acc for acc in trending_accounts if search_filter.lower() in acc.lower()] if search_filter else trending_accounts |
|
|
|
|
|
st.caption(f"Showing {len(filtered_accounts)} accounts") |
|
|
|
|
|
account_container = st.container() |
|
with account_container: |
|
selected_trending = st.selectbox( |
|
"Select trending account", |
|
options=filtered_accounts, |
|
index=0 if filtered_accounts else None, |
|
key="trending_selectbox" |
|
) |
|
|
|
if selected_trending: |
|
username = selected_trending |
|
|
|
with tab2: |
|
st.subheader("🔎 Custom Account") |
|
default_accounts = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"] |
|
custom_account = st.selectbox( |
|
"Select or type a username", |
|
options=default_accounts, |
|
index=0 |
|
) |
|
st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True) |
|
custom = st.text_input("", placeholder="Enter custom username/org") |
|
if custom.strip(): |
|
username = custom.strip() |
|
elif tab2._active and not tab1._active: |
|
username = custom_account |
|
|
|
|
|
st.subheader("🗓️ Time Period") |
|
year_options = list(range(datetime.now().year, 2017, -1)) |
|
selected_year = st.selectbox("Select Year", options=year_options) |
|
|
|
|
|
st.subheader("⚙️ Display Options") |
|
show_models = st.checkbox("Show Models", value=True) |
|
show_datasets = st.checkbox("Show Datasets", value=True) |
|
show_spaces = st.checkbox("Show Spaces", value=True) |
|
|
|
|
|
st.title("🤗 Hugging Face Contributions") |
|
if username: |
|
with st.spinner(f"Fetching commit data for {username}..."): |
|
|
|
commits_by_type = {} |
|
commit_counts_by_type = {} |
|
|
|
|
|
types_to_fetch = [] |
|
if show_models: |
|
types_to_fetch.append("model") |
|
if show_datasets: |
|
types_to_fetch.append("dataset") |
|
if show_spaces: |
|
types_to_fetch.append("space") |
|
|
|
if not types_to_fetch: |
|
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)") |
|
st.stop() |
|
|
|
|
|
for kind in types_to_fetch: |
|
try: |
|
items = cached_list_items(username, kind) |
|
repo_ids = [item.id for item in items] |
|
|
|
st.info(f"Found {len(repo_ids)} {kind}s for {username}") |
|
|
|
|
|
chunk_size = 5 |
|
total_commits = 0 |
|
all_commit_dates = [] |
|
|
|
progress_bar = st.progress(0) |
|
for i in range(0, len(repo_ids), chunk_size): |
|
chunk = repo_ids[i:i + chunk_size] |
|
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: |
|
future_to_repo = { |
|
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id |
|
for repo_id in chunk |
|
} |
|
for future in as_completed(future_to_repo): |
|
repo_commits, repo_count = future.result() |
|
if repo_commits: |
|
all_commit_dates.extend(repo_commits) |
|
total_commits += repo_count |
|
|
|
|
|
progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids))) |
|
progress_bar.progress(progress) |
|
|
|
|
|
progress_bar.progress(1.0) |
|
|
|
commits_by_type[kind] = all_commit_dates |
|
commit_counts_by_type[kind] = total_commits |
|
|
|
except Exception as e: |
|
st.warning(f"Error fetching {kind}s for {username}: {str(e)}") |
|
commits_by_type[kind] = [] |
|
commit_counts_by_type[kind] = 0 |
|
|
|
|
|
total_commits = sum(commit_counts_by_type.values()) |
|
|
|
st.subheader(f"{username}'s Activity in {selected_year}") |
|
|
|
|
|
profile_col1, profile_col2 = st.columns([1, 3]) |
|
with profile_col1: |
|
|
|
try: |
|
avatar_url = f"https://huggingface.co/avatars/{username}" |
|
st.image(avatar_url, width=150) |
|
except: |
|
st.info("No profile image available") |
|
|
|
with profile_col2: |
|
st.metric("Total Commits", total_commits) |
|
st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})") |
|
|
|
|
|
all_commits = [] |
|
for commits in commits_by_type.values(): |
|
all_commits.extend(commits) |
|
all_df = pd.DataFrame(all_commits, columns=["date"]) |
|
if not all_df.empty: |
|
all_df = all_df.drop_duplicates() |
|
|
|
make_calendar_heatmap(all_df, "All Commits", selected_year) |
|
|
|
|
|
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1) |
|
|
|
for i, (kind, emoji, label) in enumerate([ |
|
("model", "🧠", "Models"), |
|
("dataset", "📦", "Datasets"), |
|
("space", "🚀", "Spaces") |
|
]): |
|
if kind in types_to_fetch: |
|
with cols[types_to_fetch.index(kind)]: |
|
try: |
|
total = len(cached_list_items(username, kind)) |
|
commits = commits_by_type.get(kind, []) |
|
commit_count = commit_counts_by_type.get(kind, 0) |
|
df_kind = pd.DataFrame(commits, columns=["date"]) |
|
if not df_kind.empty: |
|
df_kind = df_kind.drop_duplicates() |
|
st.metric(f"{emoji} {label}", total) |
|
st.metric(f"Commits in {selected_year}", commit_count) |
|
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year) |
|
except Exception as e: |
|
st.warning(f"Error processing {label}: {str(e)}") |
|
st.metric(f"{emoji} {label}", 0) |
|
st.metric(f"Commits in {selected_year}", 0) |
|
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year) |
|
else: |
|
st.info("Please select an account from the sidebar to view contributions.") |