Spaces:
Running
Running
File size: 20,325 Bytes
c6a04f8 5ad5226 c6a04f8 5ad5226 c6a04f8 770e58c c6a04f8 5ad5226 0413cb0 5ad5226 0413cb0 5ad5226 c6a04f8 5ad5226 c6a04f8 5ad5226 c6a04f8 5ad5226 c6a04f8 9612414 770e58c 9612414 770e58c c6a04f8 5ad5226 c6a04f8 18aee2c bb8a67b 5ad5226 9612414 c6a04f8 9612414 5ad5226 18aee2c bb8a67b 5ad5226 bb8a67b 18aee2c c6a04f8 7ab58cc 5ad5226 9612414 b7dd84a 5ad5226 c6a04f8 bb8a67b 9612414 c6a04f8 5ad5226 c6a04f8 18aee2c c6a04f8 18aee2c bb8a67b 770e58c 5ad5226 770e58c 5ad5226 18aee2c 5ad5226 c6a04f8 18aee2c b7dd84a 7ab58cc 5ad5226 7ab58cc 5ad5226 7ab58cc 5ad5226 7ab58cc 5ad5226 7ab58cc 5ad5226 7ab58cc c6a04f8 5ad5226 b7dd84a 5ad5226 b7dd84a 18aee2c b7dd84a 5ad5226 c6a04f8 bb8a67b 7ab58cc 18aee2c c6a04f8 0413cb0 c6a04f8 0413cb0 c6a04f8 5ad5226 c6a04f8 5ad5226 c6a04f8 18aee2c b7dd84a 5ad5226 b7dd84a 5ad5226 c6a04f8 5ad5226 18aee2c c6a04f8 5ad5226 c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 e043685 c6a04f8 e043685 c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 5ad5226 c6a04f8 0413cb0 c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c c6a04f8 18aee2c e043685 18aee2c c6a04f8 5ad5226 c6a04f8 5ad5226 18aee2c c6a04f8 18aee2c c6a04f8 5ad5226 c6a04f8 5ad5226 e043685 c6a04f8 e043685 c6a04f8 e043685 c6a04f8 e043685 c6a04f8 5ad5226 e043685 5ad5226 c6a04f8 5ad5226 c6a04f8 9612414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import gradio as gr
import replicate
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
import requests
from io import BytesIO
import tempfile
import base64
# --- Replicate API Configuration ---
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable is not set.")
# Initialize Replicate client
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
def verify_login_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is logged in to Hugging Face."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return True if user_info else False
except Exception as e:
print(f"Could not verify user's login status: {e}")
return False
def upload_image_to_hosting(image_path: str) -> str:
"""
Upload image to hosting service and return URL.
Using multiple fallback methods for reliability.
"""
# Open the image
img = Image.open(image_path)
# Method 1: Try imgbb.com (most reliable)
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
buffered.seek(0)
img_base64 = base64.b64encode(buffered.getvalue()).decode()
response = requests.post(
"https://api.imgbb.com/1/upload",
data={
'key': '6d207e02198a847aa98d0a2a901485a5', # Free API key
'image': img_base64,
}
)
if response.status_code == 200:
data = response.json()
if data.get('success'):
return data['data']['url']
except Exception as e:
print(f"imgbb upload failed: {e}")
# Method 2: Try 0x0.st (simple and reliable)
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
buffered.seek(0)
files = {'file': ('image.png', buffered, 'image/png')}
response = requests.post("https://0x0.st", files=files)
if response.status_code == 200:
url = response.text.strip()
if url.startswith('http'):
return url
except Exception as e:
print(f"0x0.st upload failed: {e}")
# Method 3: Fallback to data URI (last resort)
buffered = BytesIO()
img.save(buffered, format="PNG")
buffered.seek(0)
img_base64 = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/png;base64,{img_base64}"
def image_to_data_uri(image_path: str) -> str:
"""Convert local image file to data URI format (kept for backwards compatibility)."""
with open(image_path, "rb") as img_file:
img_data = img_file.read()
img_base64 = base64.b64encode(img_data).decode('utf-8')
# Get the image format
img = Image.open(image_path)
img_format = img.format.lower() if img.format else 'png'
# Create data URI
data_uri = f"data:image/{img_format};base64,{img_base64}"
return data_uri
def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progress=gr.Progress()) -> str:
"""Handles text-to-image or single image-to-image using Replicate's Nano Banana."""
try:
progress(0.2, desc="π¨ Preparing...")
# Prepare input for Replicate API
input_data = {
"prompt": prompt
}
# If there's an input image, upload it to get a proper URL
if image_path:
progress(0.3, desc="π€ Uploading image...")
# Upload to hosting service for proper URL
image_url = upload_image_to_hosting(image_path)
if image_url.startswith('http'):
print(f"Image uploaded successfully: {image_url[:50]}...")
else:
print("Using data URI fallback")
input_data["image_input"] = [image_url]
progress(0.5, desc="β¨ Generating...")
# Run the model on Replicate
output = replicate.run(
"google/nano-banana",
input=input_data
)
progress(0.8, desc="πΌοΈ Finalizing...")
# Handle the output - output is already a URL string or FileObject
if output:
return process_output(output, progress)
else:
raise ValueError("No output received from Replicate API")
except Exception as e:
print(f"Error details: {e}")
print(f"Error type: {type(e)}")
if 'output' in locals():
print(f"Output value: {output}")
print(f"Output type: {type(output)}")
raise gr.Error(f"Image generation failed: {str(e)[:200]}")
def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()) -> str:
"""
Handles multi-image editing by sending a list of images and a prompt.
"""
if not images:
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
try:
progress(0.2, desc="π¨ Preparing images...")
# Convert all images to data URI format
data_uris = []
for image_path in images:
if isinstance(image_path, (list, tuple)):
image_path = image_path[0]
data_uri = image_to_data_uri(image_path)
data_uris.append(data_uri)
# Prepare input for Replicate API with multiple images
input_data = {
"prompt": prompt,
"image_input": data_uris
}
progress(0.5, desc="β¨ Generating...")
# Run the model on Replicate
output = replicate.run(
"google/nano-banana",
input=input_data
)
progress(0.8, desc="πΌοΈ Finalizing...")
# Handle the output - output is already a URL string or FileObject
if output:
# Check if output has a url attribute (FileObject)
if hasattr(output, 'url'):
# If url is a method, call it; if it's a property, just access it
image_url = output.url() if callable(output.url) else output.url
# If output is already a string URL
elif isinstance(output, str):
image_url = output
# If output is a list of URLs
elif isinstance(output, list) and len(output) > 0:
# Check first item in list
first_item = output[0]
if hasattr(first_item, 'url'):
image_url = first_item.url() if callable(first_item.url) else first_item.url
else:
image_url = first_item
else:
raise ValueError(f"Unexpected output format from Replicate: {type(output)}")
# Download the image from URL
response = requests.get(image_url)
response.raise_for_status()
# Save to temporary file
img = Image.open(BytesIO(response.content))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
img.save(tmpfile.name)
progress(1.0, desc="β
Complete!")
return tmpfile.name
else:
raise ValueError("No output received from Replicate API")
except Exception as e:
print(f"Multi-image error details: {e}")
print(f"Output value: {output if 'output' in locals() else 'Not set'}")
print(f"Output type: {type(output) if 'output' in locals() else 'Not set'}")
raise gr.Error(f"Image generation failed: {e}")
# --- Gradio App UI ---
css = '''
/* Header Styling */
.main-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 2rem;
border-radius: 1rem;
margin-bottom: 2rem;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
}
.header-title {
font-size: 2.5rem !important;
font-weight: bold;
color: white;
text-align: center;
margin: 0 !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
}
.header-subtitle {
color: rgba(255,255,255,0.9);
text-align: center;
margin-top: 0.5rem !important;
font-size: 1.1rem;
}
/* Card Styling */
.card {
background: white;
border-radius: 1rem;
padding: 1.5rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
border: 1px solid rgba(0,0,0,0.05);
}
.dark .card {
background: #1f2937;
border: 1px solid #374151;
}
/* Tab Styling */
.tabs {
border-radius: 0.5rem;
overflow: hidden;
margin-bottom: 1rem;
}
.tabitem {
padding: 1rem !important;
}
button.selected {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
}
/* Button Styling */
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-size: 1.1rem !important;
font-weight: 600 !important;
padding: 0.8rem 2rem !important;
border-radius: 0.5rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
width: 100% !important;
margin-top: 1rem !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 10px 20px rgba(102, 126, 234, 0.4) !important;
}
.use-btn {
background: linear-gradient(135deg, #10b981 0%, #059669 100%) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
padding: 0.6rem 1.5rem !important;
border-radius: 0.5rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
width: 100% !important;
}
.use-btn:hover {
transform: translateY(-1px) !important;
box-shadow: 0 5px 15px rgba(16, 185, 129, 0.4) !important;
}
/* Input Styling */
.prompt-input textarea {
border-radius: 0.5rem !important;
border: 2px solid #e5e7eb !important;
padding: 0.8rem !important;
font-size: 1rem !important;
transition: border-color 0.3s ease !important;
}
.prompt-input textarea:focus {
border-color: #667eea !important;
outline: none !important;
}
.dark .prompt-input textarea {
border-color: #374151 !important;
background: #1f2937 !important;
}
/* Image Output Styling */
#output {
border-radius: 0.5rem !important;
overflow: hidden !important;
box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important;
}
/* Progress Bar Styling */
.progress-bar {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
}
/* Examples Styling */
.examples {
background: #f9fafb;
border-radius: 0.5rem;
padding: 1rem;
margin-top: 1rem;
}
.dark .examples {
background: #1f2937;
}
/* Login Message Styling */
.login-message {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border-radius: 1rem;
padding: 2rem;
text-align: center;
border: 2px solid #f59e0b;
}
.dark .login-message {
background: linear-gradient(135deg, #7c2d12 0%, #92400e 100%);
border-color: #f59e0b;
}
/* Emoji Animations */
@keyframes bounce {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-10px); }
}
.emoji-icon {
display: inline-block;
animation: bounce 2s infinite;
}
/* Responsive Design */
@media (max-width: 768px) {
.header-title {
font-size: 2rem !important;
}
.main-container {
padding: 1rem !important;
}
}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
# Header
gr.HTML('''
<div class="main-header">
<h1 class="header-title">
π Real Nano Banana
</h1>
<p class="header-subtitle">
AI Image Generator powered by Google Nano Banana
</p>
</div>
''')
# Login Notice
gr.HTML('''
<div style="background: linear-gradient(135deg, #e0f2fe 0%, #bae6fd 100%);
border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.5rem;
border-left: 4px solid #0284c7;">
<p style="margin: 0; color: #075985; font-weight: 600;">
π Please sign in with your Hugging Face account to use this service.
</p>
</div>
''')
login_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False, elem_classes="main-container")
with main_interface:
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<div class="card">')
# Mode Selection
gr.HTML('<h3 style="margin-top: 0;">πΈ Select Mode</h3>')
active_tab_state = gr.State(value="single")
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.TabItem("πΌοΈ Single Image", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="Input Image (Optional)",
elem_classes="image-input"
)
gr.HTML('''
<p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;">
π‘ Leave empty for text-to-image generation
</p>
''')
with gr.TabItem("π¨ Multiple Images", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="Input Images (Max 2 images)",
file_types=["image"],
elem_classes="gallery-input"
)
gr.HTML('''
<p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;">
π‘ Upload up to 2 images for combination/editing
</p>
''')
# Prompt Input
gr.HTML('<h3>βοΈ Prompt</h3>')
prompt_input = gr.Textbox(
label="",
info="Describe what you want the AI to generate",
placeholder="e.g., A delicious pizza, a cat in space, futuristic cityscape...",
lines=3,
elem_classes="prompt-input"
)
# Generate Button
generate_button = gr.Button(
"π Generate",
variant="primary",
elem_classes="generate-btn"
)
# Examples
with gr.Accordion("π‘ Example Prompts", open=False):
gr.Examples(
examples=[
["A delicious looking pizza with melting cheese"],
["A cat in a spacesuit walking on the moon surface"],
["Cyberpunk city at night with neon lights"],
["Japanese garden with cherry blossoms in spring"],
["Fantasy wizard tower in a magical world"],
["Make the scene more dramatic and cinematic"],
["Transform this into a watercolor painting style"],
],
inputs=prompt_input
)
gr.HTML('</div>')
with gr.Column(scale=1):
gr.HTML('<div class="card">')
gr.HTML('<h3 style="margin-top: 0;">π¨ Generated Result</h3>')
output_image = gr.Image(
label="",
interactive=False,
elem_id="output"
)
use_image_button = gr.Button(
"β»οΈ Use this image for next edit",
elem_classes="use-btn",
visible=False
)
# Tips
gr.HTML('''
<div style="background: #f0f9ff; border-radius: 0.5rem; padding: 1rem; margin-top: 1rem;">
<h4 style="margin-top: 0; color: #0369a1;">π‘ Tips</h4>
<ul style="margin: 0; padding-left: 1.5rem; color: #0c4a6e;">
<li>Use specific and detailed prompts for better results</li>
<li>You can reuse generated images for iterative improvements</li>
<li>Multiple image mode supports up to 2 images for combination</li>
<li>English prompts tend to produce better results</li>
</ul>
</div>
''')
gr.HTML('</div>')
# Footer
gr.HTML('''
<div style="text-align: center; margin-top: 2rem; padding: 1rem;
border-top: 1px solid #e5e7eb;">
<p style="color: #6b7280;">
Made with π using Replicate API | Powered by Google Nano Banana
</p>
</div>
''')
login_button = gr.LoginButton()
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
):
if not verify_login_status(oauth_token):
raise gr.Error("Login required. Please click the 'Sign in with Hugging Face' button at the top.")
if not prompt:
raise gr.Error("Please enter a prompt.")
if active_tab == "multiple" and multi_images:
result = run_multi_image_logic(prompt, multi_images)
else:
result = run_single_image_logic(prompt, single_image)
return result, gr.update(visible=True)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state],
outputs=[output_image, use_image_button],
)
use_image_button.click(
lambda img: (img, gr.update(visible=False)),
inputs=[output_image],
outputs=[image_input, use_image_button]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_login_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = '''
<div class="login-message">
<h2>π Login Required</h2>
<p style="font-size: 1.1rem; margin: 1rem 0;">
Please sign in with your Hugging Face account to use this AI image generation tool.
</p>
<p style="margin: 1rem 0;">
After logging in, you can access:
</p>
<ul style="text-align: left; display: inline-block; margin: 1rem 0;">
<li>π High-quality image generation via Google Nano Banana</li>
<li>β‘ Fast image generation and editing</li>
<li>π¨ Text-to-image conversion</li>
<li>π§ Multiple image editing and combining</li>
</ul>
<p style="margin-top: 1.5rem; font-weight: bold;">
Click the "Sign in with Hugging Face" button at the top to get started!
</p>
</div>
'''
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, login_message])
if __name__ == "__main__":
demo.queue(max_size=None, default_concurrency_limit=None)
demo.launch() |