Spaces:
Running
Running
File size: 21,273 Bytes
c6a04f8 0413cb0 c6a04f8 0413cb0 c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 bb8a67b c6a04f8 0413cb0 c6a04f8 0413cb0 c6a04f8 0413cb0 c6a04f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import gradio as gr
from google import genai
from google.genai import types
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
from io import BytesIO
import tempfile
# --- Google Gemini API Configuration ---
# Use GEMINI_API_KEY if available, otherwise fall back to GOOGLE_API_KEY
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
API_KEY = GEMINI_API_KEY or GOOGLE_API_KEY
if not API_KEY:
raise ValueError("Neither GEMINI_API_KEY nor GOOGLE_API_KEY environment variable is set.")
client = genai.Client(
api_key=API_KEY,
)
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview'
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
try:
user_info = whoami(token=token.token)
if user_info.get("isPro", False):
return True
orgs = user_info.get("orgs", [])
if any(org.get("isEnterprise", False) for org in orgs):
return True
return False
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
def _extract_image_data_from_response(response) -> Optional[bytes]:
"""Helper to extract image data from the model's response."""
# Debug: Print response structure
print(f"Response type: {type(response)}")
# Try multiple ways to extract image data
# Method 1: Direct image attribute
if hasattr(response, 'image'):
print("Found response.image")
return response.image
# Method 2: Images array
if hasattr(response, 'images') and response.images:
print(f"Found response.images with {len(response.images)} images")
return response.images[0]
# Method 3: Candidates with parts
if hasattr(response, 'candidates') and response.candidates:
print(f"Found {len(response.candidates)} candidates")
for i, candidate in enumerate(response.candidates):
print(f"Candidate {i}: {type(candidate)}")
# Check for content.parts
if hasattr(candidate, 'content'):
print(f" Has content: {type(candidate.content)}")
if hasattr(candidate.content, 'parts') and candidate.content.parts:
print(f" Has {len(candidate.content.parts)} parts")
for j, part in enumerate(candidate.content.parts):
print(f" Part {j}: {type(part)}")
# Check for inline_data
if hasattr(part, 'inline_data'):
print(f" Has inline_data")
if hasattr(part.inline_data, 'data'):
print(f" Found image data!")
return part.inline_data.data
if hasattr(part.inline_data, 'blob'):
print(f" Found blob data!")
return part.inline_data.blob
# Check for blob directly
if hasattr(part, 'blob'):
print(f" Has blob")
return part.blob
# Check for data directly
if hasattr(part, 'data'):
print(f" Has data")
return part.data
# Method 4: Text response (might need different API configuration)
if hasattr(response, 'text'):
print(f"Response has text but no image: {response.text[:200] if response.text else 'Empty'}")
print("No image data found in response")
return None
def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progress=gr.Progress()) -> str:
"""Handles text-to-image or single image-to-image using Google Gemini."""
try:
progress(0.2, desc="๐จ ์ค๋น ์ค...")
# Prepare the prompt with image generation instruction
generation_prompt = f"Generate an image: {prompt}"
contents = []
if image_path:
# Image-to-image generation
input_image = Image.open(image_path)
contents.append(input_image)
contents.append(f"Edit this image: {prompt}")
else:
# Text-to-image generation
contents.append(generation_prompt)
progress(0.5, desc="โจ ์์ฑ ์ค...")
# Try with generation config for images
generation_config = types.GenerationConfig(
temperature=1.0,
max_output_tokens=8192,
)
response = client.models.generate_content(
model=GEMINI_MODEL_NAME,
contents=contents,
generation_config=generation_config,
)
# Debug: Print full response
print(f"Full response: {response}")
progress(0.8, desc="๐ผ๏ธ ๋ง๋ฌด๋ฆฌ ์ค...")
image_data = _extract_image_data_from_response(response)
if not image_data:
# Try alternative approach - generate_images if available
if hasattr(client.models, 'generate_images'):
print("Trying generate_images method...")
response = client.models.generate_images(
model=GEMINI_MODEL_NAME,
prompt=prompt,
n=1,
)
if hasattr(response, 'images') and response.images:
image_data = response.images[0]
if not image_data:
raise ValueError("No image data found in the model response. The API might not support image generation or the model name might be incorrect.")
# Save the generated image to a temporary file to return its path
pil_image = Image.open(BytesIO(image_data))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
pil_image.save(tmpfile.name)
progress(1.0, desc="โ
์๋ฃ!")
return tmpfile.name
except Exception as e:
print(f"Error details: {e}")
print(f"Error type: {type(e)}")
raise gr.Error(f"์ด๋ฏธ์ง ์์ฑ ์คํจ: {e}")
def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()) -> str:
"""
Handles multi-image editing by sending a list of images and a prompt.
"""
if not images:
raise gr.Error("'์ฌ๋ฌ ์ด๋ฏธ์ง' ํญ์์ ์ต์ ํ ๊ฐ์ ์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํด์ฃผ์ธ์.")
try:
progress(0.2, desc="๐จ ์ด๋ฏธ์ง ์ค๋น ์ค...")
contents = []
for image_path in images:
if isinstance(image_path, (list, tuple)):
image_path = image_path[0]
contents.append(Image.open(image_path))
contents.append(f"Combine/edit these images: {prompt}")
progress(0.5, desc="โจ ์์ฑ ์ค...")
generation_config = types.GenerationConfig(
temperature=1.0,
max_output_tokens=8192,
)
response = client.models.generate_content(
model=GEMINI_MODEL_NAME,
contents=contents,
generation_config=generation_config,
)
# Debug: Print full response
print(f"Multi-image response: {response}")
progress(0.8, desc="๐ผ๏ธ ๋ง๋ฌด๋ฆฌ ์ค...")
image_data = _extract_image_data_from_response(response)
if not image_data:
raise ValueError("No image data found in the model response. The API might not support multi-image generation.")
pil_image = Image.open(BytesIO(image_data))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
pil_image.save(tmpfile.name)
progress(1.0, desc="โ
์๋ฃ!")
return tmpfile.name
except Exception as e:
print(f"Multi-image error details: {e}")
raise gr.Error(f"์ด๋ฏธ์ง ์์ฑ ์คํจ: {e}")
# --- Gradio App UI ---
css = '''
/* Header Styling */
.main-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 2rem;
border-radius: 1rem;
margin-bottom: 2rem;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
}
.header-title {
font-size: 2.5rem !important;
font-weight: bold;
color: white;
text-align: center;
margin: 0 !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
}
.header-subtitle {
color: rgba(255,255,255,0.9);
text-align: center;
margin-top: 0.5rem !important;
font-size: 1.1rem;
}
/* Card Styling */
.card {
background: white;
border-radius: 1rem;
padding: 1.5rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
border: 1px solid rgba(0,0,0,0.05);
}
.dark .card {
background: #1f2937;
border: 1px solid #374151;
}
/* Tab Styling */
.tabs {
border-radius: 0.5rem;
overflow: hidden;
margin-bottom: 1rem;
}
.tabitem {
padding: 1rem !important;
}
button.selected {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
}
/* Button Styling */
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-size: 1.1rem !important;
font-weight: 600 !important;
padding: 0.8rem 2rem !important;
border-radius: 0.5rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
width: 100% !important;
margin-top: 1rem !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 10px 20px rgba(102, 126, 234, 0.4) !important;
}
.use-btn {
background: linear-gradient(135deg, #10b981 0%, #059669 100%) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
padding: 0.6rem 1.5rem !important;
border-radius: 0.5rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
width: 100% !important;
}
.use-btn:hover {
transform: translateY(-1px) !important;
box-shadow: 0 5px 15px rgba(16, 185, 129, 0.4) !important;
}
/* Input Styling */
.prompt-input textarea {
border-radius: 0.5rem !important;
border: 2px solid #e5e7eb !important;
padding: 0.8rem !important;
font-size: 1rem !important;
transition: border-color 0.3s ease !important;
}
.prompt-input textarea:focus {
border-color: #667eea !important;
outline: none !important;
}
.dark .prompt-input textarea {
border-color: #374151 !important;
background: #1f2937 !important;
}
/* Image Output Styling */
#output {
border-radius: 0.5rem !important;
overflow: hidden !important;
box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important;
}
/* Progress Bar Styling */
.progress-bar {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
}
/* Examples Styling */
.examples {
background: #f9fafb;
border-radius: 0.5rem;
padding: 1rem;
margin-top: 1rem;
}
.dark .examples {
background: #1f2937;
}
/* Pro Message Styling */
.pro-message {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border-radius: 1rem;
padding: 2rem;
text-align: center;
border: 2px solid #f59e0b;
}
.dark .pro-message {
background: linear-gradient(135deg, #7c2d12 0%, #92400e 100%);
border-color: #f59e0b;
}
/* Emoji Animations */
@keyframes bounce {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-10px); }
}
.emoji-icon {
display: inline-block;
animation: bounce 2s infinite;
}
/* Responsive Design */
@media (max-width: 768px) {
.header-title {
font-size: 2rem !important;
}
.main-container {
padding: 1rem !important;
}
}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
# Header
gr.HTML('''
<div class="main-header">
<h1 class="header-title">
๐ Real Nano Banana
</h1>
<p class="header-subtitle">
Google Gemini 2.5 Flash Image Preview๋ก ๊ตฌ๋๋๋ AI ์ด๋ฏธ์ง ์์ฑ๊ธฐ
</p>
</div>
''')
# Pro User Notice
gr.HTML('''
<div style="background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.5rem;
border-left: 4px solid #f59e0b;">
<p style="margin: 0; color: #92400e; font-weight: 600;">
๐ ์ด ์คํ์ด์ค๋ Hugging Face PRO ์ฌ์ฉ์ ์ ์ฉ์
๋๋ค.
<a href="https://huggingface.co/pro" target="_blank"
style="color: #dc2626; text-decoration: underline;">
PRO ๊ตฌ๋
ํ๊ธฐ
</a>
</p>
</div>
''')
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False, elem_classes="main-container")
with main_interface:
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<div class="card">')
# Mode Selection
gr.HTML('<h3 style="margin-top: 0;">๐ธ ๋ชจ๋ ์ ํ</h3>')
active_tab_state = gr.State(value="single")
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.TabItem("๐ผ๏ธ ๋จ์ผ ์ด๋ฏธ์ง", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="์
๋ ฅ ์ด๋ฏธ์ง",
elem_classes="image-input"
)
gr.HTML('''
<p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;">
๐ก ํ
์คํธโ์ด๋ฏธ์ง ์์ฑ์ ๋น์๋์ธ์
</p>
''')
with gr.TabItem("๐จ ๋ค์ค ์ด๋ฏธ์ง", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="์
๋ ฅ ์ด๋ฏธ์ง๋ค",
file_types=["image"],
elem_classes="gallery-input"
)
gr.HTML('''
<p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;">
๐ก ์ฌ๋ฌ ์ด๋ฏธ์ง๋ฅผ ๋๋๊ทธ ์ค ๋๋กญํ์ธ์
</p>
''')
# Prompt Input
gr.HTML('<h3>โ๏ธ ํ๋กฌํํธ</h3>')
prompt_input = gr.Textbox(
label="",
info="AI์๊ฒ ์ํ๋ ๊ฒ์ ์ค๋ช
ํ์ธ์",
placeholder="์: ๋ง์์ด ๋ณด์ด๋ ํผ์, ์ฐ์ฃผ๋ฅผ ๋ฐฐ๊ฒฝ์ผ๋ก ํ ๊ณ ์์ด, ๋ฏธ๋์ ์ธ ๋์ ํ๊ฒฝ...",
lines=3,
elem_classes="prompt-input"
)
# Generate Button
generate_button = gr.Button(
"๐ ์์ฑํ๊ธฐ",
variant="primary",
elem_classes="generate-btn"
)
# Examples
with gr.Accordion("๐ก ์์ ํ๋กฌํํธ", open=False):
gr.Examples(
examples=[
["์น์ฆ๊ฐ ๋์ด๋๋ ๋ง์์ด ๋ณด์ด๋ ํผ์"],
["์ฐ์ฃผ๋ณต์ ์
์ ๊ณ ์์ด๊ฐ ๋ฌ ํ๋ฉด์ ๊ฑท๊ณ ์๋ ๋ชจ์ต"],
["๋ค์จ ๋ถ๋น์ด ๋น๋๋ ์ฌ์ด๋ฒํํฌ ๋์์ ์ผ๊ฒฝ"],
["๋ด๋ ๋ฒ๊ฝ์ด ๋ง๊ฐํ ์ผ๋ณธ ์ ์"],
["ํํ์ง ์ธ๊ณ์ ๋ง๋ฒ์ฌ ํ"],
],
inputs=prompt_input
)
gr.HTML('</div>')
with gr.Column(scale=1):
gr.HTML('<div class="card">')
gr.HTML('<h3 style="margin-top: 0;">๐จ ์์ฑ ๊ฒฐ๊ณผ</h3>')
output_image = gr.Image(
label="",
interactive=False,
elem_id="output"
)
use_image_button = gr.Button(
"โป๏ธ ์ด ์ด๋ฏธ์ง๋ฅผ ๋ค์ ํธ์ง์ ์ฌ์ฉ",
elem_classes="use-btn",
visible=False
)
# Tips
gr.HTML('''
<div style="background: #f0f9ff; border-radius: 0.5rem; padding: 1rem; margin-top: 1rem;">
<h4 style="margin-top: 0; color: #0369a1;">๐ก ํ</h4>
<ul style="margin: 0; padding-left: 1.5rem; color: #0c4a6e;">
<li>๊ตฌ์ฒด์ ์ด๊ณ ์์ธํ ํ๋กฌํํธ๋ฅผ ์ฌ์ฉํ์ธ์</li>
<li>์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ ์ฌ์ฌ์ฉํ์ฌ ๋ฐ๋ณต์ ์ผ๋ก ๊ฐ์ ํ ์ ์์ต๋๋ค</li>
<li>๋ค์ค ์ด๋ฏธ์ง ๋ชจ๋๋ก ์ฌ๋ฌ ์ฐธ์กฐ ์ด๋ฏธ์ง๋ฅผ ๊ฒฐํฉํ ์ ์์ต๋๋ค</li>
</ul>
</div>
''')
gr.HTML('</div>')
# Footer
gr.HTML('''
<div style="text-align: center; margin-top: 2rem; padding: 1rem;
border-top: 1px solid #e5e7eb;">
<p style="color: #6b7280;">
Made with ๐ by Hugging Face PRO | Powered by Google Gemini 2.5 Flash
</p>
</div>
''')
login_button = gr.LoginButton()
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
):
if not verify_pro_status(oauth_token):
raise gr.Error("์ก์ธ์ค ๊ฑฐ๋ถ: ์ด ์๋น์ค๋ PRO ์ฌ์ฉ์ ์ ์ฉ์
๋๋ค.")
if not prompt:
raise gr.Error("ํ๋กฌํํธ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์.")
if active_tab == "multiple" and multi_images:
result = run_multi_image_logic(prompt, multi_images)
else:
result = run_single_image_logic(prompt, single_image)
return result, gr.update(visible=True)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state],
outputs=[output_image, use_image_button],
)
use_image_button.click(
lambda img: (img, gr.update(visible=False)),
inputs=[output_image],
outputs=[image_input, use_image_button]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = '''
<div class="pro-message">
<h2>โจ PRO ์ฌ์ฉ์ ์ ์ฉ ๊ธฐ๋ฅ</h2>
<p style="font-size: 1.1rem; margin: 1rem 0;">
์ด ๊ฐ๋ ฅํ AI ์ด๋ฏธ์ง ์์ฑ ๋๊ตฌ๋ Hugging Face <strong>PRO</strong> ๋ฉค๋ฒ ์ ์ฉ์
๋๋ค.
</p>
<p style="margin: 1rem 0;">
PRO ๊ตฌ๋
์ผ๋ก ๋ค์์ ๋๋ฆฌ์ธ์:
</p>
<ul style="text-align: left; display: inline-block; margin: 1rem 0;">
<li>๐ Google Gemini 2.5 Flash ๋ฌด์ ํ ์ก์ธ์ค</li>
<li>โก ๋น ๋ฅธ ์ด๋ฏธ์ง ์์ฑ</li>
<li>๐จ ๊ณ ํ์ง ๊ฒฐ๊ณผ๋ฌผ</li>
<li>๐ง ๋ค์ค ์ด๋ฏธ์ง ํธ์ง ๊ธฐ๋ฅ</li>
</ul>
<a href="https://huggingface.co/pro" target="_blank"
style="display: inline-block; margin-top: 1rem; padding: 1rem 2rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white; text-decoration: none; border-radius: 0.5rem;
font-weight: bold; font-size: 1.1rem;">
๐ ์ง๊ธ PRO ๋ฉค๋ฒ ๋๊ธฐ
</a>
</div>
'''
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.queue(max_size=None, default_concurrency_limit=None)
demo.launch() |