Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -158,8 +158,10 @@ def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progre
|
|
158 |
progress(0.5, desc="β¨ Generating...")
|
159 |
|
160 |
# Run the model on Replicate
|
|
|
|
|
161 |
output = replicate.run(
|
162 |
-
"google/nano-banana",
|
163 |
input=input_data
|
164 |
)
|
165 |
|
@@ -171,6 +173,13 @@ def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progre
|
|
171 |
else:
|
172 |
raise ValueError("No output received from Replicate API")
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
except Exception as e:
|
175 |
print(f"Error details: {e}")
|
176 |
print(f"Error type: {type(e)}")
|
@@ -182,6 +191,8 @@ def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progre
|
|
182 |
def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()) -> str:
|
183 |
"""
|
184 |
Handles multi-image editing by sending a list of images and a prompt.
|
|
|
|
|
185 |
"""
|
186 |
if not images:
|
187 |
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
|
@@ -189,27 +200,34 @@ def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()
|
|
189 |
try:
|
190 |
progress(0.2, desc="π¨ Preparing images...")
|
191 |
|
192 |
-
#
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
progress(0.2 + (0.2 * idx / len(images)), desc=f"π€ Uploading image {idx+1}/{len(images)}...")
|
199 |
-
image_url = upload_image_to_hosting(image_path)
|
200 |
-
image_urls.append(image_url)
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
input_data = {
|
204 |
"prompt": prompt,
|
205 |
-
"image_input":
|
206 |
}
|
207 |
|
208 |
progress(0.5, desc="β¨ Generating...")
|
209 |
|
210 |
# Run the model on Replicate
|
|
|
|
|
211 |
output = replicate.run(
|
212 |
-
"google/nano-banana",
|
213 |
input=input_data
|
214 |
)
|
215 |
|
@@ -221,11 +239,20 @@ def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()
|
|
221 |
else:
|
222 |
raise ValueError("No output received from Replicate API")
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
except Exception as e:
|
225 |
print(f"Multi-image error details: {e}")
|
|
|
226 |
print(f"Output value: {output if 'output' in locals() else 'Not set'}")
|
227 |
-
|
228 |
-
raise gr.Error(f"Image generation failed: {e}")
|
229 |
|
230 |
# --- Gradio App UI ---
|
231 |
css = '''
|
|
|
158 |
progress(0.5, desc="β¨ Generating...")
|
159 |
|
160 |
# Run the model on Replicate
|
161 |
+
# Note: Replace "google/nano-banana" with actual model name if it doesn't exist
|
162 |
+
# Examples of real models: "stability-ai/stable-diffusion", "tencentarc/photomaker", etc.
|
163 |
output = replicate.run(
|
164 |
+
"google/nano-banana", # This might need to be changed to a real model
|
165 |
input=input_data
|
166 |
)
|
167 |
|
|
|
173 |
else:
|
174 |
raise ValueError("No output received from Replicate API")
|
175 |
|
176 |
+
except replicate.exceptions.ModelError as e:
|
177 |
+
print(f"Replicate Model Error: {e}")
|
178 |
+
error_msg = str(e)
|
179 |
+
if "does not exist" in error_msg.lower() or "not found" in error_msg.lower():
|
180 |
+
raise gr.Error("The specified model 'google/nano-banana' was not found. Please check the model name and ensure your Replicate API token has access.")
|
181 |
+
else:
|
182 |
+
raise gr.Error(f"Model error: {error_msg[:200]}")
|
183 |
except Exception as e:
|
184 |
print(f"Error details: {e}")
|
185 |
print(f"Error type: {type(e)}")
|
|
|
191 |
def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()) -> str:
|
192 |
"""
|
193 |
Handles multi-image editing by sending a list of images and a prompt.
|
194 |
+
Note: Since the actual model might not support multiple images,
|
195 |
+
we'll process only the first image or combine them.
|
196 |
"""
|
197 |
if not images:
|
198 |
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
|
|
|
200 |
try:
|
201 |
progress(0.2, desc="π¨ Preparing images...")
|
202 |
|
203 |
+
# For now, we'll use only the first image since the model might not support multiple
|
204 |
+
# You can modify this based on the actual model's capabilities
|
205 |
+
image_path = images[0]
|
206 |
+
if isinstance(image_path, (list, tuple)):
|
207 |
+
image_path = image_path[0]
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
progress(0.3, desc="π€ Uploading image...")
|
210 |
+
image_url = upload_image_to_hosting(image_path)
|
211 |
+
|
212 |
+
if image_url.startswith('http'):
|
213 |
+
print(f"Image uploaded successfully: {image_url[:50]}...")
|
214 |
+
else:
|
215 |
+
print("Using data URI fallback")
|
216 |
+
|
217 |
+
# Prepare input for Replicate API
|
218 |
+
# Using single image format since model might not support multiple
|
219 |
input_data = {
|
220 |
"prompt": prompt,
|
221 |
+
"image_input": [image_url] # Send as array with single image
|
222 |
}
|
223 |
|
224 |
progress(0.5, desc="β¨ Generating...")
|
225 |
|
226 |
# Run the model on Replicate
|
227 |
+
# Note: Replace "google/nano-banana" with actual model name
|
228 |
+
# Examples of real models: "stability-ai/stable-diffusion", "tencentarc/photomaker", etc.
|
229 |
output = replicate.run(
|
230 |
+
"google/nano-banana", # This might need to be changed to a real model
|
231 |
input=input_data
|
232 |
)
|
233 |
|
|
|
239 |
else:
|
240 |
raise ValueError("No output received from Replicate API")
|
241 |
|
242 |
+
except replicate.exceptions.ModelError as e:
|
243 |
+
print(f"Replicate Model Error: {e}")
|
244 |
+
error_msg = str(e)
|
245 |
+
if "does not exist" in error_msg.lower() or "not found" in error_msg.lower():
|
246 |
+
raise gr.Error("The specified model 'google/nano-banana' was not found. Please check the model name.")
|
247 |
+
elif "no image content" in error_msg.lower():
|
248 |
+
raise gr.Error("Failed to process images. The model may not support the provided image format or multiple images.")
|
249 |
+
else:
|
250 |
+
raise gr.Error(f"Model error: {error_msg[:200]}")
|
251 |
except Exception as e:
|
252 |
print(f"Multi-image error details: {e}")
|
253 |
+
print(f"Input data sent: {input_data if 'input_data' in locals() else 'Not set'}")
|
254 |
print(f"Output value: {output if 'output' in locals() else 'Not set'}")
|
255 |
+
raise gr.Error(f"Image generation failed: {str(e)[:200]}")
|
|
|
256 |
|
257 |
# --- Gradio App UI ---
|
258 |
css = '''
|