File size: 21,191 Bytes
146dae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# //     http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.

import os
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Optional

import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F

from .. import models
from .generate import generate as ar_generate


def find_multiple(n: int, k: int):
    if n % k == 0:
        return n
    return n + k - (n % k)


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, scale_factor=10000):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    scale_factor: the base for the scaling factor, default is 10000
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / scale_factor**omega  # Parameterized scaling factor (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


@dataclass
class ModelArgs:
    dim: int = 4096
    n_layer: int = 32
    n_head: int = 32

    n_kv_head: Optional[int] = None
    multiple_of: int = 256  # make SwiGLU hidden layer size multiple of large power of 2
    ffn_dim_multiplier: Optional[float] = None
    rope_base: float = 10000
    norm_eps: float = 1e-5
    initializer_range: float = 0.02
    
    token_dropout_p: float = 0.1
    attn_dropout_p: float = 0.0
    resid_dropout_p: float = 0.1
    ffn_dropout_p: float = 0.1
    drop_path_rate: float = 0.0

    num_classes: int = 1000
    class_dropout_prob: float = 0.1
    model_type: str = 'class_cond' # clip_cond, indice_cond
    cond_dim: int = 1152
    cond_vocab_size: int = 8192

    vocab_size: int = 8192
    cls_token_num: int = 1

    max_batch_size: int = 32
    max_seq_len: int = 2048

    use_fixed_pe: bool = False

    frame_prediction: bool = False


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    @torch.autocast(device_type='cuda', enabled=False)
    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


class MLP(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
        self.act = nn.GELU(approximate='tanh')
        self.fc2 = nn.Linear(hidden_features, out_features, bias=False)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


#################################################################################
#                            Drop Path Implementation                           #
#################################################################################

def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class DropPath(torch.nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f'drop_prob={round(self.drop_prob,3):0.3f}'


#################################################################################
#                                   AR Model                                    #
#################################################################################

class FeedForward(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        hidden_dim = 4 * config.dim
        hidden_dim = int(2 * hidden_dim / 3)
        # custom dim factor multiplier
        if config.ffn_dim_multiplier is not None:
            hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
        hidden_dim = find_multiple(hidden_dim, config.multiple_of)

        self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
        self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
        self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)

    def forward(self, x):
        return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
    

class KVCache(nn.Module):
    def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
        super().__init__()
        cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
        self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
        self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))

    def update(self, input_pos, k_val, v_val):
        # input_pos: [S], k_val: [B, H, S, D]
        assert input_pos.shape[0] == k_val.shape[2], f"{input_pos.shape[0]} != {k_val.shape[2]}"
        k_out = self.k_cache
        v_out = self.v_cache
        k_out[:, :, input_pos] = k_val.to(k_out.dtype)
        v_out[:, :, input_pos] = v_val.to(v_out.dtype)

        return k_out, v_out


class Attention(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        assert config.dim % config.n_head == 0
        self.dim = config.dim
        self.head_dim = config.dim // config.n_head
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
        total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim

        # key, query, value projections for all heads, but in a batch
        self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
        self.wo = nn.Linear(config.dim, config.dim, bias=False)
        self.kv_cache = None

        # regularization
        self.attn_dropout_p = config.attn_dropout_p
        self.resid_dropout = nn.Dropout(config.resid_dropout_p)

    def forward(
        self, x: torch.Tensor,
        input_pos: Optional[torch.Tensor] = None, 
        mask: Optional[torch.Tensor] = None
    ):
        bsz, seqlen, _ = x.shape
        kv_size = self.n_kv_head * self.head_dim
        xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)

        xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
        
        xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))

        if self.kv_cache is not None:
            keys, values = self.kv_cache.update(input_pos, xk, xv)
        else:
            keys, values = xk, xv
        keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
        values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)

        output = F.scaled_dot_product_attention(
            xq, keys, values, 
            attn_mask=mask, 
            is_causal=True if mask is None else False, # is_causal=False is for KV cache
            dropout_p=self.attn_dropout_p if self.training else 0)            
        
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)

        output = self.resid_dropout(self.wo(output))
        return output


class TransformerBlock(nn.Module):
    def __init__(self, config: ModelArgs, drop_path: float):
        super().__init__()
        self.attention = Attention(config)
        self.feed_forward = FeedForward(config)
        self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(
        self, x: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
        h = x + self.drop_path(self.attention(self.attention_norm(x), start_pos, mask))
        out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
        return out


class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)

        # replace all negative labels with the last class (unconditional class)
        labels = torch.where(labels < 0, self.num_classes, labels)
        embeddings = self.embedding_table(labels)
        return embeddings


class ARModel(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size
        self.n_layer = config.n_layer
        self.max_seq_length = config.max_seq_len
        self.num_classes = config.num_classes
        self.model_type = config.model_type
        self.cls_token_num = config.cls_token_num
        self.is_sampling = False
        self.frame_prediction = config.frame_prediction

        if self.model_type == 'class_cond':
            self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
        elif self.model_type == 'clip_cond':
            self.clip_proj = nn.Linear(config.cond_dim, config.dim)
        elif self.model_type == 'indice_cond':
            self.clip_proj = LabelEmbedder(config.cond_vocab_size + 1, config.dim, 0.0)
        else:
            raise Exception("please check model type")
        
        self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
        self.tok_dropout = nn.Dropout(config.token_dropout_p)

        # transformer blocks
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
        self.layers = torch.nn.ModuleList()
        for layer_id in range(config.n_layer):
            self.layers.append(TransformerBlock(config, dpr[layer_id]))

        # output layer
        self.norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.output = nn.Linear(config.dim, config.vocab_size, bias=False)

        if config.use_fixed_pe:
            self.register_buffer('abs_pe', torch.zeros(1, config.max_seq_len + config.cls_token_num - 1, config.dim))
            abs_pe = get_1d_sincos_pos_embed_from_grid(embed_dim=config.dim, pos=np.arange(config.max_seq_len + config.cls_token_num - 1))
            self.abs_pe.copy_(torch.from_numpy(abs_pe).float().reshape_as(self.abs_pe))
            print(f"Using fixed absolute PE")
        else:
            self.abs_pe = nn.Parameter(torch.randn(1, config.max_seq_len + config.cls_token_num - 1, config.dim) * 0.02)
            print(f"Using learned absolute PE")

        self.initialize_weights()

    def initialize_weights(self):        
        # Initialize nn.Linear and nn.Embedding
        self.apply(self._init_weights)

        # Zero-out output layers:
        if hasattr(self.output, 'weight') and isinstance(self.output.weight, nn.Parameter):
            nn.init.constant_(self.output.weight, 0)

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)


    @property
    def device(self):
        return next(self.parameters()).device
    
    @property
    def dtype(self):
        return next(self.parameters()).dtype
    

    @contextmanager
    def sampling(self):
        self.is_sampling = True
        try:
            yield
        finally:
            self.is_sampling = False


    def setup_caches(self, max_batch_size, max_seq_length, dtype):
        assert max_seq_length == self.max_seq_length + self.cls_token_num, f'{max_seq_length} != {self.max_seq_length} + {self.cls_token_num=}'

        head_dim = self.config.dim // self.config.n_head
        max_seq_length = find_multiple(max_seq_length, 8)

        for b in self.layers:
            b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)

        causal_mask = torch.tril(torch.ones(max_seq_length, max_seq_length, dtype=torch.bool))
        self.causal_mask = causal_mask.unsqueeze(0).repeat(max_batch_size, 1, 1)


    def reset_caches(self):
        for b in self.layers:
            b.attention.kv_cache = None

    def clip_embedding(self, x):
        if self.model_type == 'clip_cond':
            if self.training and self.config.class_dropout_prob > 0:
                drop_ids = torch.rand(x.shape[0], device=x.device) < self.config.class_dropout_prob
                x[drop_ids] = 0.
            x = self.clip_proj(x.to(self.dtype)) # Linear
        elif self.model_type == 'indice_cond':
            if self.training and self.config.class_dropout_prob > 0:
                drop_ids = torch.rand(x.shape[0], device=x.device) < self.config.class_dropout_prob
                x[drop_ids] = self.config.cond_vocab_size
            x = self.clip_proj(x, train=self.training) # Embedding
        return x

    def forward(
        self, 
        idx: Optional[torch.Tensor], # (b, n)
        cond_idx: Optional[torch.Tensor],  # cond_idx_or_embed
        input_pos:  Optional[torch.Tensor] = None, 
        targets: Optional[torch.Tensor] = None,
        mask: Optional[torch.Tensor] = None,
        valid: Optional[torch.Tensor] = None,
    ):
        if idx is not None and cond_idx is not None: # training or naive inference
            if self.model_type == 'class_cond':
                cond_embeddings = self.cls_embedding(cond_idx, train=self.training).unsqueeze(1)[:,:self.cls_token_num]
            elif self.model_type in ['clip_cond', 'indice_cond']:
                cond_embeddings = self.clip_embedding(cond_idx)
            token_embeddings = self.tok_embeddings(idx) # (b, n, d)
            token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)  # (b, cls_token_num + n, d)
            h = self.tok_dropout(token_embeddings)
        else:
            if cond_idx is not None: # prefill in inference
                if self.model_type == 'class_cond':
                    token_embeddings = self.cls_embedding(cond_idx, train=self.training).unsqueeze(1)[:,:self.cls_token_num]
                elif self.model_type in ['clip_cond', 'indice_cond']:
                    token_embeddings = self.clip_embedding(cond_idx)
            else: # decode_n_tokens(kv cache) in inference
                token_embeddings = self.tok_embeddings(idx)
            
            bs = token_embeddings.shape[0]
            mask = self.causal_mask[:bs, None, input_pos]
            h = self.tok_dropout(token_embeddings)
        
        if self.is_sampling:
            h = h + self.abs_pe[:, input_pos]
        else:
            h = h + self.abs_pe[:, :h.shape[1]]
        
        # transformer blocks
        for layer in self.layers:
            h = layer(h, input_pos, mask)
        
        # output layers
        h = self.norm(h)
        logits = self.output(h)
        # if self.training or self.is_sampling:
        if cond_idx is not None:
        # if self.training:
            # logits = logits[:, self.cls_token_num - 1:].contiguous()
            logits = logits[:, cond_idx.size(1) - 1:].contiguous()

        # if we are given some desired targets also calculate the loss
        loss = None
        if valid is not None:
            loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
            valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
            loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
        elif targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        return logits, loss

    
    @torch.inference_mode()
    def sample(
        self, 
        c,
        cfg_scale=2.0,
        cfg_interval=-1,
        temperature=1.0,
        top_k=0,
        top_p=1.0,
        seq_length=None,
    ):
        seq_length = self.max_seq_length if seq_length is None else seq_length     
        with self.sampling():
            sampled_seqs = ar_generate(
                self, c, seq_length,
                cfg_scale=cfg_scale, cfg_interval=cfg_interval,
                temperature=temperature, top_k=top_k,
                top_p=top_p, sample_logits=True, 
            )   
        return sampled_seqs
    

    @classmethod
    def from_checkpoint(cls, ckpt, load_state_dict=True):
        if isinstance(ckpt, str):
            assert os.path.exists(ckpt), f"checkpoint {ckpt} does not exist"
            ckpt = torch.load(ckpt, map_location=lambda storage, loc: storage)
        else:
            assert isinstance(
                ckpt, dict
            ), f"checkpoint must be a dict or a path to a checkpoint"
        model = models.make(ckpt["model"], load_sd=load_state_dict)
        return model


#################################################################################
#                             LLAMA-ABS Configs                                 #
#################################################################################

def LLAMA_ABS_XXXL(**kwargs):
    return ARModel(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B

def LLAMA_ABS_XXL(**kwargs):
    return ARModel(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B

def LLAMA_ABS_XL(**kwargs):
    return ARModel(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M

def LLAMA_ABS_LP(**kwargs):
    return ARModel(ModelArgs(n_layer=30, n_head=20, dim=1280, **kwargs)) # 632M

def LLAMA_ABS_L(**kwargs):
    return ARModel(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M

def LLAMA_ABS_B(**kwargs):
    return ARModel(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M

def LLAMA_ABS_S(**kwargs):
    return ARModel(ModelArgs(n_layer=12, n_head=6, dim=384, **kwargs)) # 21.7M

ar_models = {
    'llama-abs-S': LLAMA_ABS_S,
    'llama-abs-B': LLAMA_ABS_B,
    'llama-abs-L': LLAMA_ABS_L,
    'llama-abs-LP': LLAMA_ABS_LP,
    'llama-abs-XL': LLAMA_ABS_XL,
    'llama-abs-XXL': LLAMA_ABS_XXL,
    'llama-abs-XXXL': LLAMA_ABS_XXXL,
}

models.models.update(ar_models)