|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch._dynamo.config |
|
import torch._inductor.config |
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
def top_k_top_p_filtering( |
|
logits, |
|
top_k: int = 0, |
|
top_p: float = 1.0, |
|
filter_value: float = -float("Inf"), |
|
min_tokens_to_keep: int = 1, |
|
): |
|
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering |
|
Args: |
|
logits: logits distribution shape (batch size, vocabulary size) |
|
if top_k > 0: keep only top k tokens with highest probability (top-k filtering). |
|
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). |
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) |
|
Make sure we keep at least min_tokens_to_keep per batch example in the output |
|
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 |
|
""" |
|
if top_k > 0: |
|
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) |
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits[indices_to_remove] = filter_value |
|
|
|
if top_p < 1.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
if min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 |
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
logits[indices_to_remove] = filter_value |
|
return logits |
|
|
|
|
|
def sample(logits, temperature: float=1.0, top_k: int=0, top_p: float=1.0, sample_logits=True): |
|
logits = logits[:, -1, :] / max(temperature, 1e-5) |
|
if top_k > 0 or top_p < 1.0: |
|
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) |
|
|
|
|
|
probs = F.softmax(logits.float(), dim=-1) |
|
if sample_logits: |
|
idx = torch.multinomial(probs, num_samples=1) |
|
else: |
|
_, idx = torch.topk(probs, k=1, dim=-1) |
|
return idx, probs |
|
|
|
|
|
def logits_to_probs(logits, temperature: float = 1.0, top_p: float=1.0, top_k: int = None, **kwargs): |
|
logits = logits / max(temperature, 1e-5) |
|
if top_k > 0 or top_p < 1.0: |
|
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) |
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return probs |
|
|
|
|
|
def prefill(model, cond_idx: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, **sampling_kwargs): |
|
if cfg_scale > 1.0: |
|
logits, _ = model(None, cond_idx, input_pos) |
|
logits_combined = logits |
|
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0) |
|
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale |
|
else: |
|
logits, _ = model(None, cond_idx, input_pos) |
|
|
|
return sample(logits, **sampling_kwargs)[0] |
|
|
|
|
|
def decode_one_token(model, x: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, cfg_flag: bool, **sampling_kwargs): |
|
assert input_pos.shape[-1] == 1 |
|
if cfg_scale > 1.0: |
|
x_combined = torch.cat([x, x]) |
|
logits, _ = model(x_combined, cond_idx=None, input_pos=input_pos) |
|
logits_combined = logits |
|
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0) |
|
if cfg_flag: |
|
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale |
|
else: |
|
logits = cond_logits |
|
else: |
|
logits, _ = model(x, cond_idx=None, input_pos=input_pos) |
|
return sample(logits, **sampling_kwargs) |
|
|
|
|
|
def decode_n_tokens( |
|
model, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, |
|
cfg_scale: float, cfg_interval: int, |
|
**sampling_kwargs): |
|
new_tokens, new_probs = [], [] |
|
cfg_flag = True |
|
for i in range(num_new_tokens): |
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): |
|
if cfg_interval > -1 and i > cfg_interval: |
|
cfg_flag = False |
|
next_token, next_prob = decode_one_token( |
|
model, cur_token, input_pos, cfg_scale, cfg_flag, **sampling_kwargs |
|
) |
|
input_pos += 1 |
|
new_tokens.append(next_token.clone()) |
|
new_probs.append(next_prob.clone()) |
|
cur_token = next_token.view(-1, 1) |
|
|
|
return new_tokens, new_probs |
|
|
|
|
|
@torch.no_grad() |
|
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, **sampling_kwargs): |
|
if model.frame_prediction: |
|
assert cfg_scale == 1.0, "frame prediction requires cfg_scale=1.0 (no classifier-free guidance)" |
|
cond_combined = cond |
|
T = cond.shape[1] |
|
elif model.model_type == 'class_cond': |
|
if cfg_scale > 1.0: |
|
cond_null = torch.ones_like(cond) * model.num_classes |
|
cond_combined = torch.cat([cond, cond_null]) |
|
else: |
|
cond_combined = cond |
|
T = 1 |
|
elif model.model_type == 'clip_cond': |
|
if cfg_scale > 1.0: |
|
cond_null = torch.zeros_like(cond) |
|
cond_combined = torch.cat([cond, cond_null]) |
|
else: |
|
cond_combined = cond |
|
T = model.cls_token_num |
|
elif model.model_type == 'indice_cond': |
|
if cfg_scale > 1.0: |
|
cond_null = torch.ones_like(cond) * model.cond_vocab_size |
|
cond_combined = torch.cat([cond, cond_null]) |
|
else: |
|
cond_combined = cond |
|
T = model.cls_token_num |
|
else: |
|
raise Exception("please check model type") |
|
|
|
T_new = T + max_new_tokens |
|
max_seq_length = T_new |
|
max_batch_size = cond.shape[0] |
|
|
|
device = cond.device |
|
with torch.device(device): |
|
max_batch_size_cfg = max_batch_size * 2 if cfg_scale > 1.0 else max_batch_size |
|
model.setup_caches(max_batch_size=max_batch_size_cfg, max_seq_length=max_seq_length, dtype=model.tok_embeddings.weight.dtype) |
|
|
|
if emb_masks is not None: |
|
assert emb_masks.shape[0] == max_batch_size |
|
assert emb_masks.shape[-1] == T |
|
if cfg_scale > 1.0: |
|
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * torch.cat([emb_masks, emb_masks]).unsqueeze(1) |
|
else: |
|
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * emb_masks.unsqueeze(1) |
|
|
|
eye_matrix = torch.eye(model.causal_mask.size(1), model.causal_mask.size(2), device=device) |
|
model.causal_mask[:] = model.causal_mask * (1 - eye_matrix) + eye_matrix |
|
|
|
|
|
seq = torch.empty((max_batch_size, T_new), dtype=torch.int, device=device) |
|
|
|
input_pos = torch.arange(0, T, device=device) |
|
|
|
next_token = prefill(model, cond_combined, input_pos, cfg_scale, **sampling_kwargs) |
|
seq[:, T:T+1] = next_token |
|
|
|
input_pos = torch.tensor([T], device=device, dtype=torch.int) |
|
generated_tokens, _ = decode_n_tokens(model, next_token, input_pos, max_new_tokens-1, cfg_scale, cfg_interval, **sampling_kwargs) |
|
seq[:, T+1:] = torch.cat(generated_tokens, dim=1) |
|
|
|
return seq[:, T:] |
|
|