Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	first_try
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- AR/__init__.py +0 -0
- AR/__pycache__/__init__.cpython-39.pyc +0 -0
- AR/data/__init__.py +0 -0
- AR/data/bucket_sampler.py +163 -0
- AR/data/data_module.py +76 -0
- AR/data/dataset.py +323 -0
- AR/models/__init__.py +0 -0
- AR/models/__pycache__/__init__.cpython-39.pyc +0 -0
- AR/models/__pycache__/t2s_lightning_module.cpython-39.pyc +0 -0
- AR/models/__pycache__/t2s_model.cpython-39.pyc +0 -0
- AR/models/__pycache__/utils.cpython-39.pyc +0 -0
- AR/models/t2s_lightning_module.py +141 -0
- AR/models/t2s_lightning_module_onnx.py +107 -0
- AR/models/t2s_model.py +586 -0
- AR/models/t2s_model_onnx.py +338 -0
- AR/models/utils.py +229 -0
- AR/modules/__init__.py +0 -0
- AR/modules/__pycache__/__init__.cpython-39.pyc +0 -0
- AR/modules/__pycache__/activation.cpython-39.pyc +0 -0
- AR/modules/__pycache__/embedding.cpython-39.pyc +0 -0
- AR/modules/__pycache__/lr_schedulers.cpython-39.pyc +0 -0
- AR/modules/__pycache__/optim.cpython-39.pyc +0 -0
- AR/modules/__pycache__/patched_mha_with_cache.cpython-39.pyc +0 -0
- AR/modules/__pycache__/scaling.cpython-39.pyc +0 -0
- AR/modules/__pycache__/transformer.cpython-39.pyc +0 -0
- AR/modules/activation.py +428 -0
- AR/modules/activation_onnx.py +178 -0
- AR/modules/embedding.py +81 -0
- AR/modules/embedding_onnx.py +63 -0
- AR/modules/lr_schedulers.py +83 -0
- AR/modules/optim.py +622 -0
- AR/modules/patched_mha_with_cache.py +465 -0
- AR/modules/patched_mha_with_cache_onnx.py +92 -0
- AR/modules/scaling.py +335 -0
- AR/modules/transformer.py +378 -0
- AR/modules/transformer_onnx.py +292 -0
- AR/text_processing/__init__.py +0 -0
- AR/text_processing/phonemizer.py +79 -0
- AR/text_processing/symbols.py +10 -0
- AR/utils/__init__.py +37 -0
- AR/utils/initialize.py +38 -0
- AR/utils/io.py +34 -0
- README.md +6 -4
- __pycache__/utils.cpython-39.pyc +0 -0
- configs/s1.yaml +31 -0
- configs/s1big.yaml +31 -0
- configs/s1big2.yaml +31 -0
- configs/s1longer-v2.yaml +31 -0
- configs/s1longer.yaml +31 -0
- configs/s1mq.yaml +77 -0
    	
        AR/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        AR/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | Binary file (173 Bytes). View file | 
|  | 
    	
        AR/data/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        AR/data/bucket_sampler.py
    ADDED
    
    | @@ -0,0 +1,163 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import itertools
         | 
| 4 | 
            +
            import math
         | 
| 5 | 
            +
            import random
         | 
| 6 | 
            +
            from random import shuffle
         | 
| 7 | 
            +
            from typing import Iterator
         | 
| 8 | 
            +
            from typing import Optional
         | 
| 9 | 
            +
            from typing import TypeVar
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import torch
         | 
| 12 | 
            +
            import torch.distributed as dist
         | 
| 13 | 
            +
            from torch.utils.data import Dataset
         | 
| 14 | 
            +
            from torch.utils.data import Sampler
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            __all__ = [
         | 
| 17 | 
            +
                "DistributedBucketSampler",
         | 
| 18 | 
            +
            ]
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            T_co = TypeVar("T_co", covariant=True)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            class DistributedBucketSampler(Sampler[T_co]):
         | 
| 24 | 
            +
                r"""
         | 
| 25 | 
            +
                sort the dataset wrt. input length
         | 
| 26 | 
            +
                divide samples into buckets
         | 
| 27 | 
            +
                sort within buckets
         | 
| 28 | 
            +
                divide buckets into batches
         | 
| 29 | 
            +
                sort batches
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def __init__(
         | 
| 33 | 
            +
                    self,
         | 
| 34 | 
            +
                    dataset: Dataset,
         | 
| 35 | 
            +
                    num_replicas: Optional[int] = None,
         | 
| 36 | 
            +
                    rank: Optional[int] = None,
         | 
| 37 | 
            +
                    shuffle: bool = True,
         | 
| 38 | 
            +
                    seed: int = 0,
         | 
| 39 | 
            +
                    drop_last: bool = False,
         | 
| 40 | 
            +
                    batch_size: int = 32,
         | 
| 41 | 
            +
                ) -> None:
         | 
| 42 | 
            +
                    if num_replicas is None:
         | 
| 43 | 
            +
                        if not dist.is_available():
         | 
| 44 | 
            +
                            raise RuntimeError("Requires distributed package to be available")
         | 
| 45 | 
            +
                        num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
         | 
| 46 | 
            +
                    if rank is None:
         | 
| 47 | 
            +
                        if not dist.is_available():
         | 
| 48 | 
            +
                            raise RuntimeError("Requires distributed package to be available")
         | 
| 49 | 
            +
                        rank = dist.get_rank() if torch.cuda.is_available() else 0
         | 
| 50 | 
            +
                        if torch.cuda.is_available():
         | 
| 51 | 
            +
                            torch.cuda.set_device(rank)
         | 
| 52 | 
            +
                    if rank >= num_replicas or rank < 0:
         | 
| 53 | 
            +
                        raise ValueError(
         | 
| 54 | 
            +
                            "Invalid rank {}, rank should be in the interval"
         | 
| 55 | 
            +
                            " [0, {}]".format(rank, num_replicas - 1)
         | 
| 56 | 
            +
                        )
         | 
| 57 | 
            +
                    self.dataset = dataset
         | 
| 58 | 
            +
                    self.num_replicas = num_replicas
         | 
| 59 | 
            +
                    self.rank = rank
         | 
| 60 | 
            +
                    self.epoch = 0
         | 
| 61 | 
            +
                    self.drop_last = drop_last
         | 
| 62 | 
            +
                    # If the dataset length is evenly divisible by # of replicas, then there
         | 
| 63 | 
            +
                    # is no need to drop any data, since the dataset will be split equally.
         | 
| 64 | 
            +
                    if (
         | 
| 65 | 
            +
                        self.drop_last and len(self.dataset) % self.num_replicas != 0
         | 
| 66 | 
            +
                    ):  # type: ignore[arg-type]
         | 
| 67 | 
            +
                        # Split to nearest available length that is evenly divisible.
         | 
| 68 | 
            +
                        # This is to ensure each rank receives the same amount of data when
         | 
| 69 | 
            +
                        # using this Sampler.
         | 
| 70 | 
            +
                        self.num_samples = math.ceil(
         | 
| 71 | 
            +
                            (len(self.dataset) - self.num_replicas)
         | 
| 72 | 
            +
                            / self.num_replicas  # type: ignore[arg-type]
         | 
| 73 | 
            +
                        )
         | 
| 74 | 
            +
                    else:
         | 
| 75 | 
            +
                        self.num_samples = math.ceil(
         | 
| 76 | 
            +
                            len(self.dataset) / self.num_replicas
         | 
| 77 | 
            +
                        )  # type: ignore[arg-type]
         | 
| 78 | 
            +
                    self.total_size = self.num_samples * self.num_replicas
         | 
| 79 | 
            +
                    self.shuffle = shuffle
         | 
| 80 | 
            +
                    self.seed = seed
         | 
| 81 | 
            +
                    self.batch_size = batch_size
         | 
| 82 | 
            +
                    self.id_with_length = self._get_sample_lengths()
         | 
| 83 | 
            +
                    self.id_buckets = self.make_buckets(bucket_width=2.0)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                def _get_sample_lengths(self):
         | 
| 86 | 
            +
                    id_with_lengths = []
         | 
| 87 | 
            +
                    for i in range(len(self.dataset)):
         | 
| 88 | 
            +
                        id_with_lengths.append((i, self.dataset.get_sample_length(i)))
         | 
| 89 | 
            +
                    id_with_lengths.sort(key=lambda x: x[1])
         | 
| 90 | 
            +
                    return id_with_lengths
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                def make_buckets(self, bucket_width: float = 2.0):
         | 
| 93 | 
            +
                    buckets = []
         | 
| 94 | 
            +
                    cur = []
         | 
| 95 | 
            +
                    max_sec = bucket_width
         | 
| 96 | 
            +
                    for id, sec in self.id_with_length:
         | 
| 97 | 
            +
                        if sec < max_sec:
         | 
| 98 | 
            +
                            cur.append(id)
         | 
| 99 | 
            +
                        else:
         | 
| 100 | 
            +
                            buckets.append(cur)
         | 
| 101 | 
            +
                            cur = [id]
         | 
| 102 | 
            +
                            max_sec += bucket_width
         | 
| 103 | 
            +
                    if len(cur) > 0:
         | 
| 104 | 
            +
                        buckets.append(cur)
         | 
| 105 | 
            +
                    return buckets
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def __iter__(self) -> Iterator[T_co]:
         | 
| 108 | 
            +
                    if self.shuffle:
         | 
| 109 | 
            +
                        # deterministically shuffle based on epoch and seed
         | 
| 110 | 
            +
                        g = torch.Generator()
         | 
| 111 | 
            +
                        g.manual_seed(self.seed + self.epoch)
         | 
| 112 | 
            +
                        random.seed(self.epoch + self.seed)
         | 
| 113 | 
            +
                        shuffled_bucket = []
         | 
| 114 | 
            +
                        for buc in self.id_buckets:
         | 
| 115 | 
            +
                            buc_copy = buc.copy()
         | 
| 116 | 
            +
                            shuffle(buc_copy)
         | 
| 117 | 
            +
                            shuffled_bucket.append(buc_copy)
         | 
| 118 | 
            +
                        grouped_batch_size = self.batch_size * self.num_replicas
         | 
| 119 | 
            +
                        shuffled_bucket = list(itertools.chain(*shuffled_bucket))
         | 
| 120 | 
            +
                        n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
         | 
| 121 | 
            +
                        batches = [
         | 
| 122 | 
            +
                            shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size]
         | 
| 123 | 
            +
                            for b in range(n_batch)
         | 
| 124 | 
            +
                        ]
         | 
| 125 | 
            +
                        shuffle(batches)
         | 
| 126 | 
            +
                        indices = list(itertools.chain(*batches))
         | 
| 127 | 
            +
                    else:
         | 
| 128 | 
            +
                        # type: ignore[arg-type]
         | 
| 129 | 
            +
                        indices = list(range(len(self.dataset)))
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    if not self.drop_last:
         | 
| 132 | 
            +
                        # add extra samples to make it evenly divisible
         | 
| 133 | 
            +
                        padding_size = self.total_size - len(indices)
         | 
| 134 | 
            +
                        if padding_size <= len(indices):
         | 
| 135 | 
            +
                            indices += indices[:padding_size]
         | 
| 136 | 
            +
                        else:
         | 
| 137 | 
            +
                            indices += (indices * math.ceil(padding_size / len(indices)))[
         | 
| 138 | 
            +
                                :padding_size
         | 
| 139 | 
            +
                            ]
         | 
| 140 | 
            +
                    else:
         | 
| 141 | 
            +
                        # remove tail of data to make it evenly divisible.
         | 
| 142 | 
            +
                        indices = indices[: self.total_size]
         | 
| 143 | 
            +
                    assert len(indices) == self.total_size
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    # subsample
         | 
| 146 | 
            +
                    indices = indices[self.rank : self.total_size : self.num_replicas]
         | 
| 147 | 
            +
                    assert len(indices) == self.num_samples
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    return iter(indices)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def __len__(self) -> int:
         | 
| 152 | 
            +
                    return self.num_samples
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def set_epoch(self, epoch: int) -> None:
         | 
| 155 | 
            +
                    r"""
         | 
| 156 | 
            +
                    Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
         | 
| 157 | 
            +
                    use a different random ordering for each epoch. Otherwise, the next iteration of this
         | 
| 158 | 
            +
                    sampler will yield the same ordering.
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    Args:
         | 
| 161 | 
            +
                        epoch (int): Epoch number.
         | 
| 162 | 
            +
                    """
         | 
| 163 | 
            +
                    self.epoch = epoch
         | 
    	
        AR/data/data_module.py
    ADDED
    
    | @@ -0,0 +1,76 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            from pytorch_lightning import LightningDataModule
         | 
| 4 | 
            +
            from AR.data.bucket_sampler import DistributedBucketSampler
         | 
| 5 | 
            +
            from AR.data.dataset import Text2SemanticDataset
         | 
| 6 | 
            +
            from torch.utils.data import DataLoader
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            class Text2SemanticDataModule(LightningDataModule):
         | 
| 10 | 
            +
                def __init__(
         | 
| 11 | 
            +
                    self,
         | 
| 12 | 
            +
                    config,
         | 
| 13 | 
            +
                    train_semantic_path,
         | 
| 14 | 
            +
                    train_phoneme_path,
         | 
| 15 | 
            +
                    dev_semantic_path=None,
         | 
| 16 | 
            +
                    dev_phoneme_path=None,
         | 
| 17 | 
            +
                ):
         | 
| 18 | 
            +
                    super().__init__()
         | 
| 19 | 
            +
                    self.config = config
         | 
| 20 | 
            +
                    self.train_semantic_path = train_semantic_path
         | 
| 21 | 
            +
                    self.train_phoneme_path = train_phoneme_path
         | 
| 22 | 
            +
                    self.dev_semantic_path = dev_semantic_path
         | 
| 23 | 
            +
                    self.dev_phoneme_path = dev_phoneme_path
         | 
| 24 | 
            +
                    self.num_workers = self.config["data"]["num_workers"]
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                def prepare_data(self):
         | 
| 27 | 
            +
                    pass
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                def setup(self, stage=None, output_logs=False):
         | 
| 30 | 
            +
                    self._train_dataset = Text2SemanticDataset(
         | 
| 31 | 
            +
                        phoneme_path=self.train_phoneme_path,
         | 
| 32 | 
            +
                        semantic_path=self.train_semantic_path,
         | 
| 33 | 
            +
                        max_sec=self.config["data"]["max_sec"],
         | 
| 34 | 
            +
                        pad_val=self.config["data"]["pad_val"],
         | 
| 35 | 
            +
                    )
         | 
| 36 | 
            +
                    self._dev_dataset = self._train_dataset
         | 
| 37 | 
            +
                    # self._dev_dataset = Text2SemanticDataset(
         | 
| 38 | 
            +
                    #     phoneme_path=self.dev_phoneme_path,
         | 
| 39 | 
            +
                    #     semantic_path=self.dev_semantic_path,
         | 
| 40 | 
            +
                    #     max_sample=self.config['data']['max_eval_sample'],
         | 
| 41 | 
            +
                    #     max_sec=self.config['data']['max_sec'],
         | 
| 42 | 
            +
                    #     pad_val=self.config['data']['pad_val'])
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                def train_dataloader(self):
         | 
| 45 | 
            +
                    batch_size=self.config["train"]["batch_size"]//2 if self.config["train"].get("if_dpo",False)==True else self.config["train"]["batch_size"]
         | 
| 46 | 
            +
                    batch_size = max(min(batch_size,len(self._train_dataset)//4),1)#防止不保存
         | 
| 47 | 
            +
                    sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
         | 
| 48 | 
            +
                    return DataLoader(
         | 
| 49 | 
            +
                        self._train_dataset,
         | 
| 50 | 
            +
                        batch_size=batch_size,
         | 
| 51 | 
            +
                        sampler=sampler,
         | 
| 52 | 
            +
                        collate_fn=self._train_dataset.collate,
         | 
| 53 | 
            +
                        num_workers=self.num_workers,
         | 
| 54 | 
            +
                        persistent_workers=True,
         | 
| 55 | 
            +
                        prefetch_factor=16,
         | 
| 56 | 
            +
                    )
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def val_dataloader(self):
         | 
| 59 | 
            +
                    return DataLoader(
         | 
| 60 | 
            +
                        self._dev_dataset,
         | 
| 61 | 
            +
                        batch_size=1,
         | 
| 62 | 
            +
                        shuffle=False,
         | 
| 63 | 
            +
                        collate_fn=self._train_dataset.collate,
         | 
| 64 | 
            +
                        num_workers=max(self.num_workers, 12),
         | 
| 65 | 
            +
                        persistent_workers=True,
         | 
| 66 | 
            +
                        prefetch_factor=16,
         | 
| 67 | 
            +
                    )
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # 这个会使用到嘛?
         | 
| 70 | 
            +
                def test_dataloader(self):
         | 
| 71 | 
            +
                    return DataLoader(
         | 
| 72 | 
            +
                        self._dev_dataset,
         | 
| 73 | 
            +
                        batch_size=1,
         | 
| 74 | 
            +
                        shuffle=False,
         | 
| 75 | 
            +
                        collate_fn=self._train_dataset.collate,
         | 
| 76 | 
            +
                    )
         | 
    	
        AR/data/dataset.py
    ADDED
    
    | @@ -0,0 +1,323 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import pdb
         | 
| 4 | 
            +
            import sys
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
         | 
| 7 | 
            +
            import traceback, os
         | 
| 8 | 
            +
            from typing import Dict
         | 
| 9 | 
            +
            from typing import List
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import numpy as np
         | 
| 12 | 
            +
            import pandas as pd
         | 
| 13 | 
            +
            import torch, json
         | 
| 14 | 
            +
            from torch.utils.data import DataLoader
         | 
| 15 | 
            +
            from torch.utils.data import Dataset
         | 
| 16 | 
            +
            from transformers import AutoTokenizer
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            version = os.environ.get('version',None)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from text import cleaned_text_to_sequence
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            # from config import exp_dir
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
         | 
| 26 | 
            +
                seq = sequences[0]
         | 
| 27 | 
            +
                ndim = seq.ndim
         | 
| 28 | 
            +
                if axis < 0:
         | 
| 29 | 
            +
                    axis += ndim
         | 
| 30 | 
            +
                dtype = seq.dtype
         | 
| 31 | 
            +
                pad_value = dtype.type(pad_value)
         | 
| 32 | 
            +
                seq_lengths = [seq.shape[axis] for seq in sequences]
         | 
| 33 | 
            +
                max_length = np.max(seq_lengths)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                padded_sequences = []
         | 
| 36 | 
            +
                for seq, length in zip(sequences, seq_lengths):
         | 
| 37 | 
            +
                    padding = (
         | 
| 38 | 
            +
                        [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
         | 
| 39 | 
            +
                    )
         | 
| 40 | 
            +
                    padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
         | 
| 41 | 
            +
                    padded_sequences.append(padded_seq)
         | 
| 42 | 
            +
                batch = np.stack(padded_sequences)
         | 
| 43 | 
            +
                return batch
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            class Text2SemanticDataset(Dataset):
         | 
| 47 | 
            +
                """dataset class for text tokens to semantic model training."""
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def __init__(
         | 
| 50 | 
            +
                    self,
         | 
| 51 | 
            +
                    phoneme_path: str,
         | 
| 52 | 
            +
                    semantic_path: str,
         | 
| 53 | 
            +
                    max_sample: int = None,
         | 
| 54 | 
            +
                    max_sec: int = 100,
         | 
| 55 | 
            +
                    pad_val: int = 1024,
         | 
| 56 | 
            +
                    # min value of phoneme/sec
         | 
| 57 | 
            +
                    min_ps_ratio: int = 3,
         | 
| 58 | 
            +
                    # max value of phoneme/sec
         | 
| 59 | 
            +
                    max_ps_ratio: int = 25,
         | 
| 60 | 
            +
                ) -> None:
         | 
| 61 | 
            +
                    super().__init__()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    self.semantic_data = pd.read_csv(
         | 
| 64 | 
            +
                        semantic_path, delimiter="\t", encoding="utf-8"
         | 
| 65 | 
            +
                    )
         | 
| 66 | 
            +
                    # get dict
         | 
| 67 | 
            +
                    self.path2 = phoneme_path  # "%s/2-name2text.txt"%exp_dir#phoneme_path
         | 
| 68 | 
            +
                    self.path3 = "%s/3-bert" % (
         | 
| 69 | 
            +
                        os.path.dirname(phoneme_path)
         | 
| 70 | 
            +
                    )  # "%s/3-bert"%exp_dir#bert_dir
         | 
| 71 | 
            +
                    self.path6 = semantic_path  # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
         | 
| 72 | 
            +
                    assert os.path.exists(self.path2)
         | 
| 73 | 
            +
                    assert os.path.exists(self.path6)
         | 
| 74 | 
            +
                    self.phoneme_data = {}
         | 
| 75 | 
            +
                    with open(self.path2, "r", encoding="utf8") as f:
         | 
| 76 | 
            +
                        lines = f.read().strip("\n").split("\n")
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    for line in lines:
         | 
| 79 | 
            +
                        tmp = line.split("\t")
         | 
| 80 | 
            +
                        if len(tmp) != 4:
         | 
| 81 | 
            +
                            continue
         | 
| 82 | 
            +
                        self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    # self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
         | 
| 85 | 
            +
                    # pad for semantic tokens
         | 
| 86 | 
            +
                    self.PAD: int = pad_val
         | 
| 87 | 
            +
                    # self.hz = 25
         | 
| 88 | 
            +
                    # with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
         | 
| 89 | 
            +
                    # data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
         | 
| 90 | 
            +
                    # self.hz=int(data[:-2])#
         | 
| 91 | 
            +
                    self.hz = int(os.environ.get("hz", "25hz")[:-2])
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    # max seconds of semantic token
         | 
| 94 | 
            +
                    self.max_sec = max_sec
         | 
| 95 | 
            +
                    self.min_ps_ratio = min_ps_ratio
         | 
| 96 | 
            +
                    self.max_ps_ratio = max_ps_ratio
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    if max_sample is not None:
         | 
| 99 | 
            +
                        self.semantic_data = self.semantic_data[:max_sample]
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    # {idx: (semantic, phoneme)}
         | 
| 102 | 
            +
                    # semantic list, phoneme list
         | 
| 103 | 
            +
                    self.semantic_phoneme = []
         | 
| 104 | 
            +
                    self.item_names = []
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    self.inited = False
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    if not self.inited:
         | 
| 109 | 
            +
                        # 调用初始化函数
         | 
| 110 | 
            +
                        self.init_batch()
         | 
| 111 | 
            +
                        self.inited = True
         | 
| 112 | 
            +
                        del self.semantic_data
         | 
| 113 | 
            +
                        del self.phoneme_data
         | 
| 114 | 
            +
                    # self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
         | 
| 115 | 
            +
                    # self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def init_batch(self):
         | 
| 118 | 
            +
                    semantic_data_len = len(self.semantic_data)
         | 
| 119 | 
            +
                    phoneme_data_len = len(self.phoneme_data.keys())
         | 
| 120 | 
            +
                    print("semantic_data_len:", semantic_data_len)
         | 
| 121 | 
            +
                    print("phoneme_data_len:", phoneme_data_len)
         | 
| 122 | 
            +
                    print(self.semantic_data)
         | 
| 123 | 
            +
                    idx = 0
         | 
| 124 | 
            +
                    num_not_in = 0
         | 
| 125 | 
            +
                    num_deleted_bigger = 0
         | 
| 126 | 
            +
                    num_deleted_ps = 0
         | 
| 127 | 
            +
                    for i in range(semantic_data_len):
         | 
| 128 | 
            +
                        # 先依次遍历
         | 
| 129 | 
            +
                        # get str
         | 
| 130 | 
            +
                        item_name = self.semantic_data.iloc[i,0]
         | 
| 131 | 
            +
                        # print(self.phoneme_data)
         | 
| 132 | 
            +
                        try:
         | 
| 133 | 
            +
                            phoneme, word2ph, text = self.phoneme_data[item_name]
         | 
| 134 | 
            +
                        except Exception:
         | 
| 135 | 
            +
                            traceback.print_exc()
         | 
| 136 | 
            +
                            # print(f"{item_name} not in self.phoneme_data !")
         | 
| 137 | 
            +
                            num_not_in += 1
         | 
| 138 | 
            +
                            continue
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                        semantic_str = self.semantic_data.iloc[i,1]
         | 
| 141 | 
            +
                        # get token list
         | 
| 142 | 
            +
                        semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
         | 
| 143 | 
            +
                        # (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
         | 
| 144 | 
            +
                        # 过滤掉太长的样本
         | 
| 145 | 
            +
                        if (
         | 
| 146 | 
            +
                            len(semantic_ids) > self.max_sec * self.hz
         | 
| 147 | 
            +
                        ):  #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
         | 
| 148 | 
            +
                            num_deleted_bigger += 1
         | 
| 149 | 
            +
                            continue
         | 
| 150 | 
            +
                        # (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
         | 
| 151 | 
            +
                        phoneme = phoneme.split(" ")
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                        try:
         | 
| 154 | 
            +
                            phoneme_ids = cleaned_text_to_sequence(phoneme, version)
         | 
| 155 | 
            +
                        except:
         | 
| 156 | 
            +
                            traceback.print_exc()
         | 
| 157 | 
            +
                            # print(f"{item_name} not in self.phoneme_data !")
         | 
| 158 | 
            +
                            num_not_in += 1
         | 
| 159 | 
            +
                            continue
         | 
| 160 | 
            +
                        # if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
         | 
| 161 | 
            +
                        if (
         | 
| 162 | 
            +
                            len(phoneme_ids) > self.max_sec * self.hz / 2.5
         | 
| 163 | 
            +
                        ):  ###########2:改为恒定限制为semantic/2.5就行
         | 
| 164 | 
            +
                            num_deleted_ps += 1
         | 
| 165 | 
            +
                            continue
         | 
| 166 | 
            +
                        # if len(semantic_ids) > 1000:###########3
         | 
| 167 | 
            +
                        #     num_deleted_bigger += 1
         | 
| 168 | 
            +
                        #     continue
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                        ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                        if (
         | 
| 173 | 
            +
                            ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
         | 
| 174 | 
            +
                        ):  ##########4#3~25#每秒多少个phone
         | 
| 175 | 
            +
                            num_deleted_ps += 1
         | 
| 176 | 
            +
                            # print(item_name)
         | 
| 177 | 
            +
                            continue
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                        self.semantic_phoneme.append((semantic_ids, phoneme_ids))
         | 
| 180 | 
            +
                        idx += 1
         | 
| 181 | 
            +
                        self.item_names.append(item_name)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    min_num = 100  # 20直接不补#30补了也不存ckpt
         | 
| 184 | 
            +
                    leng = len(self.semantic_phoneme)
         | 
| 185 | 
            +
                    if leng < min_num:
         | 
| 186 | 
            +
                        tmp1 = self.semantic_phoneme
         | 
| 187 | 
            +
                        tmp2 = self.item_names
         | 
| 188 | 
            +
                        self.semantic_phoneme = []
         | 
| 189 | 
            +
                        self.item_names = []
         | 
| 190 | 
            +
                        for _ in range(max(2, int(min_num / leng))):
         | 
| 191 | 
            +
                            self.semantic_phoneme += tmp1
         | 
| 192 | 
            +
                            self.item_names += tmp2
         | 
| 193 | 
            +
                    if num_not_in > 0:
         | 
| 194 | 
            +
                        print(f"there are {num_not_in} semantic datas not in phoneme datas")
         | 
| 195 | 
            +
                    if num_deleted_bigger > 0:
         | 
| 196 | 
            +
                        print(
         | 
| 197 | 
            +
                            f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
                    if num_deleted_ps > 0:
         | 
| 200 | 
            +
                        # 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
         | 
| 201 | 
            +
                        print(
         | 
| 202 | 
            +
                            f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
         | 
| 203 | 
            +
                        )
         | 
| 204 | 
            +
                    """
         | 
| 205 | 
            +
                    there are 31 semantic datas not in phoneme datas
         | 
| 206 | 
            +
                    deleted 34 audios who's duration are bigger than 54 seconds
         | 
| 207 | 
            +
                    deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
         | 
| 208 | 
            +
                    dataset.__len__(): 366463
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    """
         | 
| 211 | 
            +
                    # 345410 for LibriTTS
         | 
| 212 | 
            +
                    print("dataset.__len__():", self.__len__())
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                def __get_item_names__(self) -> List[str]:
         | 
| 215 | 
            +
                    return self.item_names
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                def __len__(self) -> int:
         | 
| 218 | 
            +
                    return len(self.semantic_phoneme)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                def __getitem__(self, idx: int) -> Dict:
         | 
| 221 | 
            +
                    semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
         | 
| 222 | 
            +
                    item_name = self.item_names[idx]
         | 
| 223 | 
            +
                    phoneme_ids_len = len(phoneme_ids)
         | 
| 224 | 
            +
                    # semantic tokens target
         | 
| 225 | 
            +
                    semantic_ids_len = len(semantic_ids)
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    flag = 0
         | 
| 228 | 
            +
                    path_bert = "%s/%s.pt" % (self.path3, item_name)
         | 
| 229 | 
            +
                    if os.path.exists(path_bert) == True:
         | 
| 230 | 
            +
                        bert_feature = torch.load(path_bert, map_location="cpu")
         | 
| 231 | 
            +
                    else:
         | 
| 232 | 
            +
                        flag = 1
         | 
| 233 | 
            +
                    if flag == 1:
         | 
| 234 | 
            +
                        # bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
         | 
| 235 | 
            +
                        bert_feature = None
         | 
| 236 | 
            +
                    else:
         | 
| 237 | 
            +
                        assert bert_feature.shape[-1] == len(phoneme_ids)
         | 
| 238 | 
            +
                    return {
         | 
| 239 | 
            +
                        "idx": idx,
         | 
| 240 | 
            +
                        "phoneme_ids": phoneme_ids,
         | 
| 241 | 
            +
                        "phoneme_ids_len": phoneme_ids_len,
         | 
| 242 | 
            +
                        "semantic_ids": semantic_ids,
         | 
| 243 | 
            +
                        "semantic_ids_len": semantic_ids_len,
         | 
| 244 | 
            +
                        "bert_feature": bert_feature,
         | 
| 245 | 
            +
                    }
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                def get_sample_length(self, idx: int):
         | 
| 248 | 
            +
                    semantic_ids = self.semantic_phoneme[idx][0]
         | 
| 249 | 
            +
                    sec = 1.0 * len(semantic_ids) / self.hz
         | 
| 250 | 
            +
                    return sec
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                def collate(self, examples: List[Dict]) -> Dict:
         | 
| 253 | 
            +
                    sample_index: List[int] = []
         | 
| 254 | 
            +
                    phoneme_ids: List[torch.Tensor] = []
         | 
| 255 | 
            +
                    phoneme_ids_lens: List[int] = []
         | 
| 256 | 
            +
                    semantic_ids: List[torch.Tensor] = []
         | 
| 257 | 
            +
                    semantic_ids_lens: List[int] = []
         | 
| 258 | 
            +
                    # return
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    for item in examples:
         | 
| 261 | 
            +
                        sample_index.append(item["idx"])
         | 
| 262 | 
            +
                        phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
         | 
| 263 | 
            +
                        semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
         | 
| 264 | 
            +
                        phoneme_ids_lens.append(item["phoneme_ids_len"])
         | 
| 265 | 
            +
                        semantic_ids_lens.append(item["semantic_ids_len"])
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    # pad 0
         | 
| 268 | 
            +
                    phoneme_ids = batch_sequences(phoneme_ids)
         | 
| 269 | 
            +
                    semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    # # convert each batch to torch.tensor
         | 
| 272 | 
            +
                    phoneme_ids = torch.tensor(phoneme_ids)
         | 
| 273 | 
            +
                    semantic_ids = torch.tensor(semantic_ids)
         | 
| 274 | 
            +
                    phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
         | 
| 275 | 
            +
                    semantic_ids_lens = torch.tensor(semantic_ids_lens)
         | 
| 276 | 
            +
                    bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
         | 
| 277 | 
            +
                    bert_padded.zero_()
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    for idx, item in enumerate(examples):
         | 
| 280 | 
            +
                        bert = item["bert_feature"]
         | 
| 281 | 
            +
                        if bert != None:
         | 
| 282 | 
            +
                            bert_padded[idx, :, : bert.shape[-1]] = bert
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    return {
         | 
| 285 | 
            +
                        # List[int]
         | 
| 286 | 
            +
                        "ids": sample_index,
         | 
| 287 | 
            +
                        # torch.Tensor (B, max_phoneme_length)
         | 
| 288 | 
            +
                        "phoneme_ids": phoneme_ids,
         | 
| 289 | 
            +
                        # torch.Tensor (B)
         | 
| 290 | 
            +
                        "phoneme_ids_len": phoneme_ids_lens,
         | 
| 291 | 
            +
                        # torch.Tensor (B, max_semantic_ids_length)
         | 
| 292 | 
            +
                        "semantic_ids": semantic_ids,
         | 
| 293 | 
            +
                        # torch.Tensor (B)
         | 
| 294 | 
            +
                        "semantic_ids_len": semantic_ids_lens,
         | 
| 295 | 
            +
                        # torch.Tensor (B, 1024, max_phoneme_length)
         | 
| 296 | 
            +
                        "bert_feature": bert_padded,
         | 
| 297 | 
            +
                    }
         | 
| 298 | 
            +
             | 
| 299 | 
            +
             | 
| 300 | 
            +
            if __name__ == "__main__":
         | 
| 301 | 
            +
                root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
         | 
| 302 | 
            +
                dataset = Text2SemanticDataset(
         | 
| 303 | 
            +
                    phoneme_path=root_dir + "phoneme_train.npy",
         | 
| 304 | 
            +
                    semantic_path=root_dir + "semantic_train.tsv",
         | 
| 305 | 
            +
                )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                batch_size = 12
         | 
| 308 | 
            +
                dataloader = DataLoader(
         | 
| 309 | 
            +
                    dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
         | 
| 310 | 
            +
                )
         | 
| 311 | 
            +
                for i, batch in enumerate(dataloader):
         | 
| 312 | 
            +
                    if i % 1000 == 0:
         | 
| 313 | 
            +
                        print(i)
         | 
| 314 | 
            +
                    # if i == 0:
         | 
| 315 | 
            +
                    #     print('batch["ids"]:', batch["ids"])
         | 
| 316 | 
            +
                    # print('batch["phoneme_ids"]:', batch["phoneme_ids"],
         | 
| 317 | 
            +
                    #       batch["phoneme_ids"].shape)
         | 
| 318 | 
            +
                    # print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
         | 
| 319 | 
            +
                    #       batch["phoneme_ids_len"].shape)
         | 
| 320 | 
            +
                    # print('batch["semantic_ids"]:', batch["semantic_ids"],
         | 
| 321 | 
            +
                    #       batch["semantic_ids"].shape)
         | 
| 322 | 
            +
                    # print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
         | 
| 323 | 
            +
                    #       batch["semantic_ids_len"].shape)
         | 
    	
        AR/models/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        AR/models/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | Binary file (180 Bytes). View file | 
|  | 
    	
        AR/models/__pycache__/t2s_lightning_module.cpython-39.pyc
    ADDED
    
    | Binary file (3.25 kB). View file | 
|  | 
    	
        AR/models/__pycache__/t2s_model.cpython-39.pyc
    ADDED
    
    | Binary file (12.7 kB). View file | 
|  | 
    	
        AR/models/__pycache__/utils.cpython-39.pyc
    ADDED
    
    | Binary file (6.66 kB). View file | 
|  | 
    	
        AR/models/t2s_lightning_module.py
    ADDED
    
    | @@ -0,0 +1,141 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import os, sys
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            now_dir = os.getcwd()
         | 
| 6 | 
            +
            sys.path.append(now_dir)
         | 
| 7 | 
            +
            from typing import Dict
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            from pytorch_lightning import LightningModule
         | 
| 11 | 
            +
            from AR.models.t2s_model import Text2SemanticDecoder
         | 
| 12 | 
            +
            from AR.modules.lr_schedulers import WarmupCosineLRSchedule
         | 
| 13 | 
            +
            from AR.modules.optim import ScaledAdam
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            class Text2SemanticLightningModule(LightningModule):
         | 
| 16 | 
            +
                def __init__(self, config, output_dir, is_train=True):
         | 
| 17 | 
            +
                    super().__init__()
         | 
| 18 | 
            +
                    self.config = config
         | 
| 19 | 
            +
                    self.top_k = 3
         | 
| 20 | 
            +
                    self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
         | 
| 21 | 
            +
                    pretrained_s1 = config.get("pretrained_s1")
         | 
| 22 | 
            +
                    if pretrained_s1 and is_train:
         | 
| 23 | 
            +
                        # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
         | 
| 24 | 
            +
                        print(
         | 
| 25 | 
            +
                            self.load_state_dict(
         | 
| 26 | 
            +
                                torch.load(pretrained_s1, map_location="cpu")["weight"]
         | 
| 27 | 
            +
                            )
         | 
| 28 | 
            +
                        )
         | 
| 29 | 
            +
                    if is_train:
         | 
| 30 | 
            +
                        self.automatic_optimization = False
         | 
| 31 | 
            +
                        self.save_hyperparameters()
         | 
| 32 | 
            +
                        self.eval_dir = output_dir / "eval"
         | 
| 33 | 
            +
                        self.eval_dir.mkdir(parents=True, exist_ok=True)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                def training_step(self, batch: Dict, batch_idx: int):
         | 
| 36 | 
            +
                    opt = self.optimizers()
         | 
| 37 | 
            +
                    scheduler = self.lr_schedulers()
         | 
| 38 | 
            +
                    forward=self.model.forward if self.config["train"].get("if_dpo",False)==True else self.model.forward_old
         | 
| 39 | 
            +
                    loss, acc = forward(
         | 
| 40 | 
            +
                        batch["phoneme_ids"],
         | 
| 41 | 
            +
                        batch["phoneme_ids_len"],
         | 
| 42 | 
            +
                        batch["semantic_ids"],
         | 
| 43 | 
            +
                        batch["semantic_ids_len"],
         | 
| 44 | 
            +
                        batch["bert_feature"],
         | 
| 45 | 
            +
                    )
         | 
| 46 | 
            +
                    self.manual_backward(loss)
         | 
| 47 | 
            +
                    if batch_idx > 0 and batch_idx % 4 == 0:
         | 
| 48 | 
            +
                        opt.step()
         | 
| 49 | 
            +
                        opt.zero_grad()
         | 
| 50 | 
            +
                        scheduler.step()
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    self.log(
         | 
| 53 | 
            +
                        "total_loss",
         | 
| 54 | 
            +
                        loss,
         | 
| 55 | 
            +
                        on_step=True,
         | 
| 56 | 
            +
                        on_epoch=True,
         | 
| 57 | 
            +
                        prog_bar=True,
         | 
| 58 | 
            +
                        sync_dist=True,
         | 
| 59 | 
            +
                    )
         | 
| 60 | 
            +
                    self.log(
         | 
| 61 | 
            +
                        "lr",
         | 
| 62 | 
            +
                        scheduler.get_last_lr()[0],
         | 
| 63 | 
            +
                        on_epoch=True,
         | 
| 64 | 
            +
                        prog_bar=True,
         | 
| 65 | 
            +
                        sync_dist=True,
         | 
| 66 | 
            +
                    )
         | 
| 67 | 
            +
                    self.log(
         | 
| 68 | 
            +
                        f"top_{self.top_k}_acc",
         | 
| 69 | 
            +
                        acc,
         | 
| 70 | 
            +
                        on_step=True,
         | 
| 71 | 
            +
                        on_epoch=True,
         | 
| 72 | 
            +
                        prog_bar=True,
         | 
| 73 | 
            +
                        sync_dist=True,
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                def validation_step(self, batch: Dict, batch_idx: int):
         | 
| 77 | 
            +
                    return
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                # # get loss
         | 
| 80 | 
            +
                # loss, acc = self.model.forward(
         | 
| 81 | 
            +
                #     batch['phoneme_ids'], batch['phoneme_ids_len'],
         | 
| 82 | 
            +
                #     batch['semantic_ids'], batch['semantic_ids_len'],
         | 
| 83 | 
            +
                #     batch['bert_feature']
         | 
| 84 | 
            +
                # )
         | 
| 85 | 
            +
                #
         | 
| 86 | 
            +
                # self.log(
         | 
| 87 | 
            +
                #     "val_total_loss",
         | 
| 88 | 
            +
                #     loss,
         | 
| 89 | 
            +
                #     on_step=True,
         | 
| 90 | 
            +
                #     on_epoch=True,
         | 
| 91 | 
            +
                #     prog_bar=True,
         | 
| 92 | 
            +
                #     sync_dist=True)
         | 
| 93 | 
            +
                # self.log(
         | 
| 94 | 
            +
                #     f"val_top_{self.top_k}_acc",
         | 
| 95 | 
            +
                #     acc,
         | 
| 96 | 
            +
                #     on_step=True,
         | 
| 97 | 
            +
                #     on_epoch=True,
         | 
| 98 | 
            +
                #     prog_bar=True,
         | 
| 99 | 
            +
                #     sync_dist=True)
         | 
| 100 | 
            +
                #
         | 
| 101 | 
            +
                # # get infer output
         | 
| 102 | 
            +
                # semantic_len = batch['semantic_ids'].size(1)
         | 
| 103 | 
            +
                # prompt_len = min(int(semantic_len * 0.5), 150)
         | 
| 104 | 
            +
                # prompt = batch['semantic_ids'][:, :prompt_len]
         | 
| 105 | 
            +
                # pred_semantic = self.model.infer(batch['phoneme_ids'],
         | 
| 106 | 
            +
                #                                  batch['phoneme_ids_len'], prompt,
         | 
| 107 | 
            +
                #                                  batch['bert_feature']
         | 
| 108 | 
            +
                #                                  )
         | 
| 109 | 
            +
                # save_name = f'semantic_toks_{batch_idx}.pt'
         | 
| 110 | 
            +
                # save_path = os.path.join(self.eval_dir, save_name)
         | 
| 111 | 
            +
                # torch.save(pred_semantic.detach().cpu(), save_path)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def configure_optimizers(self):
         | 
| 114 | 
            +
                    model_parameters = self.model.parameters()
         | 
| 115 | 
            +
                    parameters_names = []
         | 
| 116 | 
            +
                    parameters_names.append(
         | 
| 117 | 
            +
                        [name_param_pair[0] for name_param_pair in self.model.named_parameters()]
         | 
| 118 | 
            +
                    )
         | 
| 119 | 
            +
                    lm_opt = ScaledAdam(
         | 
| 120 | 
            +
                        model_parameters,
         | 
| 121 | 
            +
                        lr=0.01,
         | 
| 122 | 
            +
                        betas=(0.9, 0.95),
         | 
| 123 | 
            +
                        clipping_scale=2.0,
         | 
| 124 | 
            +
                        parameters_names=parameters_names,
         | 
| 125 | 
            +
                        show_dominant_parameters=False,
         | 
| 126 | 
            +
                        clipping_update_period=1000,
         | 
| 127 | 
            +
                    )
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    return {
         | 
| 130 | 
            +
                        "optimizer": lm_opt,
         | 
| 131 | 
            +
                        "lr_scheduler": {
         | 
| 132 | 
            +
                            "scheduler": WarmupCosineLRSchedule(
         | 
| 133 | 
            +
                                lm_opt,
         | 
| 134 | 
            +
                                init_lr=self.config["optimizer"]["lr_init"],
         | 
| 135 | 
            +
                                peak_lr=self.config["optimizer"]["lr"],
         | 
| 136 | 
            +
                                end_lr=self.config["optimizer"]["lr_end"],
         | 
| 137 | 
            +
                                warmup_steps=self.config["optimizer"]["warmup_steps"],
         | 
| 138 | 
            +
                                total_steps=self.config["optimizer"]["decay_steps"],
         | 
| 139 | 
            +
                            )
         | 
| 140 | 
            +
                        },
         | 
| 141 | 
            +
                    }
         | 
    	
        AR/models/t2s_lightning_module_onnx.py
    ADDED
    
    | @@ -0,0 +1,107 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import os, sys
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            now_dir = os.getcwd()
         | 
| 6 | 
            +
            sys.path.append(now_dir)
         | 
| 7 | 
            +
            from typing import Dict
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            from pytorch_lightning import LightningModule
         | 
| 11 | 
            +
            from AR.models.t2s_model_onnx import Text2SemanticDecoder
         | 
| 12 | 
            +
            from AR.modules.lr_schedulers import WarmupCosineLRSchedule
         | 
| 13 | 
            +
            from AR.modules.optim import ScaledAdam
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            class Text2SemanticLightningModule(LightningModule):
         | 
| 17 | 
            +
                def __init__(self, config, output_dir, is_train=True):
         | 
| 18 | 
            +
                    super().__init__()
         | 
| 19 | 
            +
                    self.config = config
         | 
| 20 | 
            +
                    self.top_k = 3
         | 
| 21 | 
            +
                    self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
         | 
| 22 | 
            +
                    pretrained_s1 = config.get("pretrained_s1")
         | 
| 23 | 
            +
                    if pretrained_s1 and is_train:
         | 
| 24 | 
            +
                        # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
         | 
| 25 | 
            +
                        print(
         | 
| 26 | 
            +
                            self.load_state_dict(
         | 
| 27 | 
            +
                                torch.load(pretrained_s1, map_location="cpu")["weight"]
         | 
| 28 | 
            +
                            )
         | 
| 29 | 
            +
                        )
         | 
| 30 | 
            +
                    if is_train:
         | 
| 31 | 
            +
                        self.automatic_optimization = False
         | 
| 32 | 
            +
                        self.save_hyperparameters()
         | 
| 33 | 
            +
                        self.eval_dir = output_dir / "eval"
         | 
| 34 | 
            +
                        self.eval_dir.mkdir(parents=True, exist_ok=True)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                def training_step(self, batch: Dict, batch_idx: int):
         | 
| 37 | 
            +
                    opt = self.optimizers()
         | 
| 38 | 
            +
                    scheduler = self.lr_schedulers()
         | 
| 39 | 
            +
                    loss, acc = self.model.forward(
         | 
| 40 | 
            +
                        batch["phoneme_ids"],
         | 
| 41 | 
            +
                        batch["phoneme_ids_len"],
         | 
| 42 | 
            +
                        batch["semantic_ids"],
         | 
| 43 | 
            +
                        batch["semantic_ids_len"],
         | 
| 44 | 
            +
                        batch["bert_feature"],
         | 
| 45 | 
            +
                    )
         | 
| 46 | 
            +
                    self.manual_backward(loss)
         | 
| 47 | 
            +
                    if batch_idx > 0 and batch_idx % 4 == 0:
         | 
| 48 | 
            +
                        opt.step()
         | 
| 49 | 
            +
                        opt.zero_grad()
         | 
| 50 | 
            +
                        scheduler.step()
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    self.log(
         | 
| 53 | 
            +
                        "total_loss",
         | 
| 54 | 
            +
                        loss,
         | 
| 55 | 
            +
                        on_step=True,
         | 
| 56 | 
            +
                        on_epoch=True,
         | 
| 57 | 
            +
                        prog_bar=True,
         | 
| 58 | 
            +
                        sync_dist=True,
         | 
| 59 | 
            +
                    )
         | 
| 60 | 
            +
                    self.log(
         | 
| 61 | 
            +
                        "lr",
         | 
| 62 | 
            +
                        scheduler.get_last_lr()[0],
         | 
| 63 | 
            +
                        on_epoch=True,
         | 
| 64 | 
            +
                        prog_bar=True,
         | 
| 65 | 
            +
                        sync_dist=True,
         | 
| 66 | 
            +
                    )
         | 
| 67 | 
            +
                    self.log(
         | 
| 68 | 
            +
                        f"top_{self.top_k}_acc",
         | 
| 69 | 
            +
                        acc,
         | 
| 70 | 
            +
                        on_step=True,
         | 
| 71 | 
            +
                        on_epoch=True,
         | 
| 72 | 
            +
                        prog_bar=True,
         | 
| 73 | 
            +
                        sync_dist=True,
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                def validation_step(self, batch: Dict, batch_idx: int):
         | 
| 77 | 
            +
                    return
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                def configure_optimizers(self):
         | 
| 80 | 
            +
                    model_parameters = self.model.parameters()
         | 
| 81 | 
            +
                    parameters_names = []
         | 
| 82 | 
            +
                    parameters_names.append(
         | 
| 83 | 
            +
                        [name_param_pair[0] for name_param_pair in self.model.named_parameters()]
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
            +
                    lm_opt = ScaledAdam(
         | 
| 86 | 
            +
                        model_parameters,
         | 
| 87 | 
            +
                        lr=0.01,
         | 
| 88 | 
            +
                        betas=(0.9, 0.95),
         | 
| 89 | 
            +
                        clipping_scale=2.0,
         | 
| 90 | 
            +
                        parameters_names=parameters_names,
         | 
| 91 | 
            +
                        show_dominant_parameters=False,
         | 
| 92 | 
            +
                        clipping_update_period=1000,
         | 
| 93 | 
            +
                    )
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    return {
         | 
| 96 | 
            +
                        "optimizer": lm_opt,
         | 
| 97 | 
            +
                        "lr_scheduler": {
         | 
| 98 | 
            +
                            "scheduler": WarmupCosineLRSchedule(
         | 
| 99 | 
            +
                                lm_opt,
         | 
| 100 | 
            +
                                init_lr=self.config["optimizer"]["lr_init"],
         | 
| 101 | 
            +
                                peak_lr=self.config["optimizer"]["lr"],
         | 
| 102 | 
            +
                                end_lr=self.config["optimizer"]["lr_end"],
         | 
| 103 | 
            +
                                warmup_steps=self.config["optimizer"]["warmup_steps"],
         | 
| 104 | 
            +
                                total_steps=self.config["optimizer"]["decay_steps"],
         | 
| 105 | 
            +
                            )
         | 
| 106 | 
            +
                        },
         | 
| 107 | 
            +
                    }
         | 
    	
        AR/models/t2s_model.py
    ADDED
    
    | @@ -0,0 +1,586 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import random
         | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from tqdm import tqdm
         | 
| 8 | 
            +
            from typing import List
         | 
| 9 | 
            +
            from AR.models.utils import make_pad_mask
         | 
| 10 | 
            +
            from AR.models.utils import (
         | 
| 11 | 
            +
                topk_sampling,
         | 
| 12 | 
            +
                sample,
         | 
| 13 | 
            +
                logits_to_probs,
         | 
| 14 | 
            +
                multinomial_sample_one_no_sync,
         | 
| 15 | 
            +
                dpo_loss,
         | 
| 16 | 
            +
                make_reject_y,
         | 
| 17 | 
            +
                get_batch_logps
         | 
| 18 | 
            +
            )
         | 
| 19 | 
            +
            from AR.modules.embedding import SinePositionalEmbedding
         | 
| 20 | 
            +
            from AR.modules.embedding import TokenEmbedding
         | 
| 21 | 
            +
            from AR.modules.transformer import LayerNorm
         | 
| 22 | 
            +
            from AR.modules.transformer import TransformerEncoder
         | 
| 23 | 
            +
            from AR.modules.transformer import TransformerEncoderLayer
         | 
| 24 | 
            +
            from torch import nn
         | 
| 25 | 
            +
            from torch.nn import functional as F
         | 
| 26 | 
            +
            from torchmetrics.classification import MulticlassAccuracy
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            default_config = {
         | 
| 29 | 
            +
                "embedding_dim": 512,
         | 
| 30 | 
            +
                "hidden_dim": 512,
         | 
| 31 | 
            +
                "num_head": 8,
         | 
| 32 | 
            +
                "num_layers": 12,
         | 
| 33 | 
            +
                "num_codebook": 8,
         | 
| 34 | 
            +
                "p_dropout": 0.0,
         | 
| 35 | 
            +
                "vocab_size": 1024 + 1,
         | 
| 36 | 
            +
                "phoneme_vocab_size": 512,
         | 
| 37 | 
            +
                "EOS": 1024,
         | 
| 38 | 
            +
            }
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            @torch.jit.script
         | 
| 42 | 
            +
            class T2SMLP:
         | 
| 43 | 
            +
                def __init__(self, w1, b1, w2, b2):
         | 
| 44 | 
            +
                    self.w1 = w1
         | 
| 45 | 
            +
                    self.b1 = b1
         | 
| 46 | 
            +
                    self.w2 = w2
         | 
| 47 | 
            +
                    self.b2 = b2
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def forward(self, x):
         | 
| 50 | 
            +
                    x = F.relu(F.linear(x, self.w1, self.b1))
         | 
| 51 | 
            +
                    x = F.linear(x, self.w2, self.b2)
         | 
| 52 | 
            +
                    return x
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
            @torch.jit.script
         | 
| 56 | 
            +
            class T2SBlock:
         | 
| 57 | 
            +
                def __init__(
         | 
| 58 | 
            +
                        self,
         | 
| 59 | 
            +
                        num_heads,
         | 
| 60 | 
            +
                        hidden_dim: int,
         | 
| 61 | 
            +
                        mlp: T2SMLP,
         | 
| 62 | 
            +
                        qkv_w,
         | 
| 63 | 
            +
                        qkv_b,
         | 
| 64 | 
            +
                        out_w,
         | 
| 65 | 
            +
                        out_b,
         | 
| 66 | 
            +
                        norm_w1,
         | 
| 67 | 
            +
                        norm_b1,
         | 
| 68 | 
            +
                        norm_eps1,
         | 
| 69 | 
            +
                        norm_w2,
         | 
| 70 | 
            +
                        norm_b2,
         | 
| 71 | 
            +
                        norm_eps2,
         | 
| 72 | 
            +
                ):
         | 
| 73 | 
            +
                    self.num_heads = num_heads
         | 
| 74 | 
            +
                    self.mlp = mlp
         | 
| 75 | 
            +
                    self.hidden_dim: int = hidden_dim
         | 
| 76 | 
            +
                    self.qkv_w = qkv_w
         | 
| 77 | 
            +
                    self.qkv_b = qkv_b
         | 
| 78 | 
            +
                    self.out_w = out_w
         | 
| 79 | 
            +
                    self.out_b = out_b
         | 
| 80 | 
            +
                    self.norm_w1 = norm_w1
         | 
| 81 | 
            +
                    self.norm_b1 = norm_b1
         | 
| 82 | 
            +
                    self.norm_eps1 = norm_eps1
         | 
| 83 | 
            +
                    self.norm_w2 = norm_w2
         | 
| 84 | 
            +
                    self.norm_b2 = norm_b2
         | 
| 85 | 
            +
                    self.norm_eps2 = norm_eps2
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                def process_prompt(self, x, attn_mask: torch.Tensor):
         | 
| 88 | 
            +
                    q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    batch_size = q.shape[0]
         | 
| 91 | 
            +
                    q_len = q.shape[1]
         | 
| 92 | 
            +
                    kv_len = k.shape[1]
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    k_cache = k
         | 
| 95 | 
            +
                    v_cache = v
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
         | 
| 98 | 
            +
                    k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
         | 
| 99 | 
            +
                    v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    attn = attn.permute(2, 0, 1, 3).reshape(batch_size, -1, self.hidden_dim)
         | 
| 104 | 
            +
                    attn = F.linear(attn, self.out_w, self.out_b)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    x = F.layer_norm(
         | 
| 107 | 
            +
                        x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
         | 
| 108 | 
            +
                    )
         | 
| 109 | 
            +
                    x = F.layer_norm(
         | 
| 110 | 
            +
                        x + self.mlp.forward(x),
         | 
| 111 | 
            +
                        [self.hidden_dim],
         | 
| 112 | 
            +
                        self.norm_w2,
         | 
| 113 | 
            +
                        self.norm_b2,
         | 
| 114 | 
            +
                        self.norm_eps2,
         | 
| 115 | 
            +
                    )
         | 
| 116 | 
            +
                    return x, k_cache, v_cache
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                def decode_next_token(self, x, k_cache, v_cache):
         | 
| 119 | 
            +
                    q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    k_cache = torch.cat([k_cache, k], dim=1)
         | 
| 122 | 
            +
                    v_cache = torch.cat([v_cache, v], dim=1)
         | 
| 123 | 
            +
                    kv_len = k_cache.shape[1]
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    batch_size = q.shape[0]
         | 
| 126 | 
            +
                    q_len = q.shape[1]
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
         | 
| 129 | 
            +
                    k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
         | 
| 130 | 
            +
                    v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    attn = F.scaled_dot_product_attention(q, k, v)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    attn = attn.permute(2, 0, 1, 3).reshape(batch_size, -1, self.hidden_dim)
         | 
| 135 | 
            +
                    attn = F.linear(attn, self.out_w, self.out_b)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    x = F.layer_norm(
         | 
| 138 | 
            +
                        x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
         | 
| 139 | 
            +
                    )
         | 
| 140 | 
            +
                    x = F.layer_norm(
         | 
| 141 | 
            +
                        x + self.mlp.forward(x),
         | 
| 142 | 
            +
                        [self.hidden_dim],
         | 
| 143 | 
            +
                        self.norm_w2,
         | 
| 144 | 
            +
                        self.norm_b2,
         | 
| 145 | 
            +
                        self.norm_eps2,
         | 
| 146 | 
            +
                    )
         | 
| 147 | 
            +
                    return x, k_cache, v_cache
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            @torch.jit.script
         | 
| 151 | 
            +
            class T2STransformer:
         | 
| 152 | 
            +
                def __init__(self, num_blocks: int, blocks: List[T2SBlock]):
         | 
| 153 | 
            +
                    self.num_blocks: int = num_blocks
         | 
| 154 | 
            +
                    self.blocks = blocks
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                def process_prompt(
         | 
| 157 | 
            +
                        self, x, attn_mask: torch.Tensor):
         | 
| 158 | 
            +
                    k_cache: List[torch.Tensor] = []
         | 
| 159 | 
            +
                    v_cache: List[torch.Tensor] = []
         | 
| 160 | 
            +
                    for i in range(self.num_blocks):
         | 
| 161 | 
            +
                        x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask)
         | 
| 162 | 
            +
                        k_cache.append(k_cache_)
         | 
| 163 | 
            +
                        v_cache.append(v_cache_)
         | 
| 164 | 
            +
                    return x, k_cache, v_cache
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def decode_next_token(
         | 
| 167 | 
            +
                        self, x, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor]
         | 
| 168 | 
            +
                ):
         | 
| 169 | 
            +
                    for i in range(self.num_blocks):
         | 
| 170 | 
            +
                        x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
         | 
| 171 | 
            +
                    return x, k_cache, v_cache
         | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
            class Text2SemanticDecoder(nn.Module):
         | 
| 175 | 
            +
                def __init__(self, config, norm_first=False, top_k=3):
         | 
| 176 | 
            +
                    super(Text2SemanticDecoder, self).__init__()
         | 
| 177 | 
            +
                    self.model_dim = config["model"]["hidden_dim"]
         | 
| 178 | 
            +
                    self.embedding_dim = config["model"]["embedding_dim"]
         | 
| 179 | 
            +
                    self.num_head = config["model"]["head"]
         | 
| 180 | 
            +
                    self.num_layers = config["model"]["n_layer"]
         | 
| 181 | 
            +
                    self.norm_first = norm_first
         | 
| 182 | 
            +
                    self.vocab_size = config["model"]["vocab_size"]
         | 
| 183 | 
            +
                    self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
         | 
| 184 | 
            +
                    self.p_dropout = config["model"]["dropout"]
         | 
| 185 | 
            +
                    self.EOS = config["model"]["EOS"]
         | 
| 186 | 
            +
                    self.norm_first = norm_first
         | 
| 187 | 
            +
                    assert self.EOS == self.vocab_size - 1
         | 
| 188 | 
            +
                    # should be same as num of kmeans bin
         | 
| 189 | 
            +
                    # assert self.EOS == 1024
         | 
| 190 | 
            +
                    self.bert_proj = nn.Linear(1024, self.embedding_dim)
         | 
| 191 | 
            +
                    self.ar_text_embedding = TokenEmbedding(
         | 
| 192 | 
            +
                        self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
         | 
| 193 | 
            +
                    )
         | 
| 194 | 
            +
                    self.ar_text_position = SinePositionalEmbedding(
         | 
| 195 | 
            +
                        self.embedding_dim, dropout=0.1, scale=False, alpha=True
         | 
| 196 | 
            +
                    )
         | 
| 197 | 
            +
                    self.ar_audio_embedding = TokenEmbedding(
         | 
| 198 | 
            +
                        self.embedding_dim, self.vocab_size, self.p_dropout
         | 
| 199 | 
            +
                    )
         | 
| 200 | 
            +
                    self.ar_audio_position = SinePositionalEmbedding(
         | 
| 201 | 
            +
                        self.embedding_dim, dropout=0.1, scale=False, alpha=True
         | 
| 202 | 
            +
                    )
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    self.h = TransformerEncoder(
         | 
| 205 | 
            +
                        TransformerEncoderLayer(
         | 
| 206 | 
            +
                            d_model=self.model_dim,
         | 
| 207 | 
            +
                            nhead=self.num_head,
         | 
| 208 | 
            +
                            dim_feedforward=self.model_dim * 4,
         | 
| 209 | 
            +
                            dropout=0.1,
         | 
| 210 | 
            +
                            batch_first=True,
         | 
| 211 | 
            +
                            norm_first=norm_first,
         | 
| 212 | 
            +
                        ),
         | 
| 213 | 
            +
                        num_layers=self.num_layers,
         | 
| 214 | 
            +
                        norm=LayerNorm(self.model_dim) if norm_first else None,
         | 
| 215 | 
            +
                    )
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
         | 
| 218 | 
            +
                    self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    self.ar_accuracy_metric = MulticlassAccuracy(
         | 
| 221 | 
            +
                        self.vocab_size,
         | 
| 222 | 
            +
                        top_k=top_k,
         | 
| 223 | 
            +
                        average="micro",
         | 
| 224 | 
            +
                        multidim_average="global",
         | 
| 225 | 
            +
                        ignore_index=self.EOS,
         | 
| 226 | 
            +
                    )
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    blocks = []
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    for i in range(self.num_layers):
         | 
| 231 | 
            +
                        layer = self.h.layers[i]
         | 
| 232 | 
            +
                        t2smlp = T2SMLP(
         | 
| 233 | 
            +
                            layer.linear1.weight,
         | 
| 234 | 
            +
                            layer.linear1.bias,
         | 
| 235 | 
            +
                            layer.linear2.weight,
         | 
| 236 | 
            +
                            layer.linear2.bias
         | 
| 237 | 
            +
                        )
         | 
| 238 | 
            +
                        # (layer.self_attn.in_proj_weight, layer.self_attn.in_proj_bias)
         | 
| 239 | 
            +
                        block = T2SBlock(
         | 
| 240 | 
            +
                            self.num_head,
         | 
| 241 | 
            +
                            self.model_dim,
         | 
| 242 | 
            +
                            t2smlp,
         | 
| 243 | 
            +
                            layer.self_attn.in_proj_weight,
         | 
| 244 | 
            +
                            layer.self_attn.in_proj_bias,
         | 
| 245 | 
            +
                            layer.self_attn.out_proj.weight,
         | 
| 246 | 
            +
                            layer.self_attn.out_proj.bias,
         | 
| 247 | 
            +
                            layer.norm1.weight,
         | 
| 248 | 
            +
                            layer.norm1.bias,
         | 
| 249 | 
            +
                            layer.norm1.eps,
         | 
| 250 | 
            +
                            layer.norm2.weight,
         | 
| 251 | 
            +
                            layer.norm2.bias,
         | 
| 252 | 
            +
                            layer.norm2.eps
         | 
| 253 | 
            +
                        )
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                        blocks.append(block)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    self.t2s_transformer = T2STransformer(self.num_layers, blocks)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
         | 
| 260 | 
            +
                    x = self.ar_text_embedding(x)
         | 
| 261 | 
            +
                    x = x + self.bert_proj(bert_feature.transpose(1, 2))
         | 
| 262 | 
            +
                    x = self.ar_text_position(x)
         | 
| 263 | 
            +
                    x_mask = make_pad_mask(x_lens)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    y_mask = make_pad_mask(y_lens)
         | 
| 266 | 
            +
                    y_mask_int = y_mask.type(torch.int64)
         | 
| 267 | 
            +
                    codes = y.type(torch.int64) * (1 - y_mask_int)
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    # Training
         | 
| 270 | 
            +
                    # AR Decoder
         | 
| 271 | 
            +
                    y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
         | 
| 272 | 
            +
                    x_len = x_lens.max()
         | 
| 273 | 
            +
                    y_len = y_lens.max()
         | 
| 274 | 
            +
                    y_emb = self.ar_audio_embedding(y)
         | 
| 275 | 
            +
                    y_pos = self.ar_audio_position(y_emb)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    ar_xy_padding_mask = xy_padding_mask
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    x_attn_mask = F.pad(
         | 
| 282 | 
            +
                        torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
         | 
| 283 | 
            +
                        (0, y_len),
         | 
| 284 | 
            +
                        value=True,
         | 
| 285 | 
            +
                    )
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    y_attn_mask = F.pad(
         | 
| 288 | 
            +
                        torch.triu(
         | 
| 289 | 
            +
                            torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
         | 
| 290 | 
            +
                            diagonal=1,
         | 
| 291 | 
            +
                        ),
         | 
| 292 | 
            +
                        (x_len, 0),
         | 
| 293 | 
            +
                        value=False,
         | 
| 294 | 
            +
                    )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
         | 
| 297 | 
            +
                    bsz, src_len = x.shape[0], x_len + y_len
         | 
| 298 | 
            +
                    _xy_padding_mask = (
         | 
| 299 | 
            +
                        ar_xy_padding_mask.view(bsz, 1, 1, src_len)
         | 
| 300 | 
            +
                        .expand(-1, self.num_head, -1, -1)
         | 
| 301 | 
            +
                        .reshape(bsz * self.num_head, 1, src_len)
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
                    xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
         | 
| 304 | 
            +
                    new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
         | 
| 305 | 
            +
                    new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
         | 
| 306 | 
            +
                    xy_attn_mask = new_attn_mask
         | 
| 307 | 
            +
                    # x 和完整的 y 一次性输入模型
         | 
| 308 | 
            +
                    xy_pos = torch.concat([x, y_pos], dim=1)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    return xy_pos, xy_attn_mask, targets
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                def forward(self, x, x_lens, y, y_lens, bert_feature):
         | 
| 313 | 
            +
                    """
         | 
| 314 | 
            +
                    x: phoneme_ids
         | 
| 315 | 
            +
                    y: semantic_ids
         | 
| 316 | 
            +
                    """
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    reject_y, reject_y_lens = make_reject_y(y, y_lens)
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    xy_dec, _ = self.h(
         | 
| 323 | 
            +
                        (xy_pos, None),
         | 
| 324 | 
            +
                        mask=xy_attn_mask,
         | 
| 325 | 
            +
                    )
         | 
| 326 | 
            +
                    x_len = x_lens.max()
         | 
| 327 | 
            +
                    logits = self.ar_predict_layer(xy_dec[:, x_len:])
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    ###### DPO #############
         | 
| 330 | 
            +
                    reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    reject_xy_dec, _ = self.h(
         | 
| 333 | 
            +
                        (reject_xy_pos, None),
         | 
| 334 | 
            +
                        mask=reject_xy_attn_mask,
         | 
| 335 | 
            +
                    )
         | 
| 336 | 
            +
                    x_len = x_lens.max()
         | 
| 337 | 
            +
                    reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    # loss
         | 
| 340 | 
            +
                    # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
         | 
| 343 | 
            +
                    acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                    A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
         | 
| 346 | 
            +
                    loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    loss = loss_1 + loss_2
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    return loss, acc
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                def forward_old(self, x, x_lens, y, y_lens, bert_feature):
         | 
| 353 | 
            +
                    """
         | 
| 354 | 
            +
                    x: phoneme_ids
         | 
| 355 | 
            +
                    y: semantic_ids
         | 
| 356 | 
            +
                    """
         | 
| 357 | 
            +
                    x = self.ar_text_embedding(x)
         | 
| 358 | 
            +
                    x = x + self.bert_proj(bert_feature.transpose(1, 2))
         | 
| 359 | 
            +
                    x = self.ar_text_position(x)
         | 
| 360 | 
            +
                    x_mask = make_pad_mask(x_lens)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    y_mask = make_pad_mask(y_lens)
         | 
| 363 | 
            +
                    y_mask_int = y_mask.type(torch.int64)
         | 
| 364 | 
            +
                    codes = y.type(torch.int64) * (1 - y_mask_int)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    # Training
         | 
| 367 | 
            +
                    # AR Decoder
         | 
| 368 | 
            +
                    y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
         | 
| 369 | 
            +
                    x_len = x_lens.max()
         | 
| 370 | 
            +
                    y_len = y_lens.max()
         | 
| 371 | 
            +
                    y_emb = self.ar_audio_embedding(y)
         | 
| 372 | 
            +
                    y_pos = self.ar_audio_position(y_emb)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
         | 
| 375 | 
            +
                    ar_xy_padding_mask = xy_padding_mask
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    x_attn_mask = F.pad(
         | 
| 378 | 
            +
                        torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
         | 
| 379 | 
            +
                        (0, y_len),
         | 
| 380 | 
            +
                        value=True,
         | 
| 381 | 
            +
                    )
         | 
| 382 | 
            +
                    y_attn_mask = F.pad(
         | 
| 383 | 
            +
                        torch.triu(
         | 
| 384 | 
            +
                            torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
         | 
| 385 | 
            +
                            diagonal=1,
         | 
| 386 | 
            +
                        ),
         | 
| 387 | 
            +
                        (x_len, 0),
         | 
| 388 | 
            +
                        value=False,
         | 
| 389 | 
            +
                    )
         | 
| 390 | 
            +
                    xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
         | 
| 391 | 
            +
                    bsz, src_len = x.shape[0], x_len + y_len
         | 
| 392 | 
            +
                    _xy_padding_mask = (
         | 
| 393 | 
            +
                        ar_xy_padding_mask.view(bsz, 1, 1, src_len)
         | 
| 394 | 
            +
                        .expand(-1, self.num_head, -1, -1)
         | 
| 395 | 
            +
                        .reshape(bsz * self.num_head, 1, src_len)
         | 
| 396 | 
            +
                    )
         | 
| 397 | 
            +
                    xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
         | 
| 398 | 
            +
                    new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
         | 
| 399 | 
            +
                    new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
         | 
| 400 | 
            +
                    xy_attn_mask = new_attn_mask
         | 
| 401 | 
            +
                    # x 和完整的 y 一次性输入模型
         | 
| 402 | 
            +
                    xy_pos = torch.concat([x, y_pos], dim=1)
         | 
| 403 | 
            +
                    xy_dec, _ = self.h(
         | 
| 404 | 
            +
                        (xy_pos, None),
         | 
| 405 | 
            +
                        mask=xy_attn_mask,
         | 
| 406 | 
            +
                    )
         | 
| 407 | 
            +
                    logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
         | 
| 408 | 
            +
                    # loss
         | 
| 409 | 
            +
                    # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
         | 
| 410 | 
            +
                    loss = F.cross_entropy(logits, targets, reduction="sum")
         | 
| 411 | 
            +
                    acc = self.ar_accuracy_metric(logits.detach(), targets).item()
         | 
| 412 | 
            +
                    return loss, acc
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
         | 
| 415 | 
            +
                def infer(
         | 
| 416 | 
            +
                        self,
         | 
| 417 | 
            +
                        x,
         | 
| 418 | 
            +
                        x_lens,
         | 
| 419 | 
            +
                        prompts,
         | 
| 420 | 
            +
                        bert_feature,
         | 
| 421 | 
            +
                        top_k: int = -100,
         | 
| 422 | 
            +
                        early_stop_num: int = -1,
         | 
| 423 | 
            +
                        temperature: float = 1.0,
         | 
| 424 | 
            +
                ):
         | 
| 425 | 
            +
                    x = self.ar_text_embedding(x)
         | 
| 426 | 
            +
                    x = x + self.bert_proj(bert_feature.transpose(1, 2))
         | 
| 427 | 
            +
                    x = self.ar_text_position(x)
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    # AR Decoder
         | 
| 430 | 
            +
                    y = prompts
         | 
| 431 | 
            +
                    prefix_len = y.shape[1]
         | 
| 432 | 
            +
                    x_len = x.shape[1]
         | 
| 433 | 
            +
                    x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
         | 
| 434 | 
            +
                    stop = False
         | 
| 435 | 
            +
                    for _ in tqdm(range(1500)):
         | 
| 436 | 
            +
                        y_emb = self.ar_audio_embedding(y)
         | 
| 437 | 
            +
                        y_pos = self.ar_audio_position(y_emb)
         | 
| 438 | 
            +
                        # x 和逐渐增长的 y 一起输入给模型
         | 
| 439 | 
            +
                        xy_pos = torch.concat([x, y_pos], dim=1)
         | 
| 440 | 
            +
                        y_len = y.shape[1]
         | 
| 441 | 
            +
                        x_attn_mask_pad = F.pad(
         | 
| 442 | 
            +
                            x_attn_mask,
         | 
| 443 | 
            +
                            (0, y_len),
         | 
| 444 | 
            +
                            value=True,
         | 
| 445 | 
            +
                        )
         | 
| 446 | 
            +
                        y_attn_mask = F.pad(
         | 
| 447 | 
            +
                            torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
         | 
| 448 | 
            +
                            (x_len, 0),
         | 
| 449 | 
            +
                            value=False,
         | 
| 450 | 
            +
                        )
         | 
| 451 | 
            +
                        xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
         | 
| 452 | 
            +
                            y.device
         | 
| 453 | 
            +
                        )
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                        xy_dec, _ = self.h(
         | 
| 456 | 
            +
                            (xy_pos, None),
         | 
| 457 | 
            +
                            mask=xy_attn_mask,
         | 
| 458 | 
            +
                        )
         | 
| 459 | 
            +
                        logits = self.ar_predict_layer(xy_dec[:, -1])
         | 
| 460 | 
            +
                        samples = topk_sampling(
         | 
| 461 | 
            +
                            logits, top_k=top_k, top_p=1.0, temperature=temperature
         | 
| 462 | 
            +
                        )
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                        if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
         | 
| 465 | 
            +
                            print("use early stop num:", early_stop_num)
         | 
| 466 | 
            +
                            stop = True
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                        if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
         | 
| 469 | 
            +
                            # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
         | 
| 470 | 
            +
                            stop = True
         | 
| 471 | 
            +
                        if stop:
         | 
| 472 | 
            +
                            if prompts.shape[1] == y.shape[1]:
         | 
| 473 | 
            +
                                y = torch.concat([y, torch.zeros_like(samples)], dim=1)
         | 
| 474 | 
            +
                                print("bad zero prediction")
         | 
| 475 | 
            +
                            print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
         | 
| 476 | 
            +
                            break
         | 
| 477 | 
            +
                        # 本次生成的 semantic_ids 和之前的 y 构成新的 y
         | 
| 478 | 
            +
                        # print(samples.shape)#[1,1]#第一个1是bs
         | 
| 479 | 
            +
                        # import os
         | 
| 480 | 
            +
                        # os._exit(2333)
         | 
| 481 | 
            +
                        y = torch.concat([y, samples], dim=1)
         | 
| 482 | 
            +
                    return y
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                def pad_y_eos(self, y, y_mask_int, eos_id):
         | 
| 485 | 
            +
                    targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
         | 
| 486 | 
            +
                        y_mask_int, (0, 1), value=1
         | 
| 487 | 
            +
                    )
         | 
| 488 | 
            +
                    # 错位
         | 
| 489 | 
            +
                    return targets[:, :-1], targets[:, 1:]
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                def infer_panel(
         | 
| 492 | 
            +
                        self,
         | 
| 493 | 
            +
                        x,  #####全部文本token
         | 
| 494 | 
            +
                        x_lens,
         | 
| 495 | 
            +
                        prompts,  ####参考音频token
         | 
| 496 | 
            +
                        bert_feature,
         | 
| 497 | 
            +
                        top_k: int = -100,
         | 
| 498 | 
            +
                        top_p: int = 100,
         | 
| 499 | 
            +
                        early_stop_num: int = -1,
         | 
| 500 | 
            +
                        temperature: float = 1.0,
         | 
| 501 | 
            +
                ):
         | 
| 502 | 
            +
                    x = self.ar_text_embedding(x)
         | 
| 503 | 
            +
                    x = x + self.bert_proj(bert_feature.transpose(1, 2))
         | 
| 504 | 
            +
                    x = self.ar_text_position(x)
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    # AR Decoder
         | 
| 507 | 
            +
                    y = prompts
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                    x_len = x.shape[1]
         | 
| 510 | 
            +
                    x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
         | 
| 511 | 
            +
                    stop = False
         | 
| 512 | 
            +
                    # print(1111111,self.num_layers)
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                    k_cache = None
         | 
| 515 | 
            +
                    v_cache = None
         | 
| 516 | 
            +
                    ###################  first step ##########################
         | 
| 517 | 
            +
                    if y is not None:
         | 
| 518 | 
            +
                        y_emb = self.ar_audio_embedding(y)
         | 
| 519 | 
            +
                        y_len = y_emb.shape[1]
         | 
| 520 | 
            +
                        prefix_len = y.shape[1]
         | 
| 521 | 
            +
                        y_pos = self.ar_audio_position(y_emb)
         | 
| 522 | 
            +
                        xy_pos = torch.concat([x, y_pos], dim=1)
         | 
| 523 | 
            +
                        ref_free = False
         | 
| 524 | 
            +
                    else:
         | 
| 525 | 
            +
                        y_emb = None
         | 
| 526 | 
            +
                        y_len = 0
         | 
| 527 | 
            +
                        prefix_len = 0
         | 
| 528 | 
            +
                        y_pos = None
         | 
| 529 | 
            +
                        xy_pos = x
         | 
| 530 | 
            +
                        y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
         | 
| 531 | 
            +
                        prompts = y
         | 
| 532 | 
            +
                        ref_free = True
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                    x_attn_mask_pad = F.pad(
         | 
| 535 | 
            +
                        x_attn_mask,
         | 
| 536 | 
            +
                        (0, y_len),  ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
         | 
| 537 | 
            +
                        value=True,
         | 
| 538 | 
            +
                    )
         | 
| 539 | 
            +
                    y_attn_mask = F.pad(  ###yy的右上1扩展到左边xy的0,(y,x+y)
         | 
| 540 | 
            +
                        torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
         | 
| 541 | 
            +
                        (x_len, 0),
         | 
| 542 | 
            +
                        value=False,
         | 
| 543 | 
            +
                    )
         | 
| 544 | 
            +
                    xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
         | 
| 545 | 
            +
                        x.device
         | 
| 546 | 
            +
                    )
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                    for idx in tqdm(range(1500)):
         | 
| 549 | 
            +
                        if xy_attn_mask is not None:
         | 
| 550 | 
            +
                            xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
         | 
| 551 | 
            +
                        else:
         | 
| 552 | 
            +
                            xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                        logits = self.ar_predict_layer(
         | 
| 555 | 
            +
                            xy_dec[:, -1]
         | 
| 556 | 
            +
                        )
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                        if idx == 0:
         | 
| 559 | 
            +
                            xy_attn_mask = None
         | 
| 560 | 
            +
                            logits = logits[:, :-1]
         | 
| 561 | 
            +
                        samples = sample(
         | 
| 562 | 
            +
                            logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
         | 
| 563 | 
            +
                        )[0].unsqueeze(0)
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                        y = torch.concat([y, samples], dim=1)
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                        if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
         | 
| 568 | 
            +
                            print("use early stop num:", early_stop_num)
         | 
| 569 | 
            +
                            stop = True
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                        if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
         | 
| 572 | 
            +
                            stop = True
         | 
| 573 | 
            +
                        if stop:
         | 
| 574 | 
            +
                            if y.shape[1] == 0:
         | 
| 575 | 
            +
                                y = torch.concat([y, torch.zeros_like(samples)], dim=1)
         | 
| 576 | 
            +
                                print("bad zero prediction")
         | 
| 577 | 
            +
                            print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
         | 
| 578 | 
            +
                            break
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                        ####################### update next step ###################################
         | 
| 581 | 
            +
                        y_emb = self.ar_audio_embedding(y[:, -1:])
         | 
| 582 | 
            +
                        xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    if ref_free:
         | 
| 585 | 
            +
                        return y[:, :-1], 0
         | 
| 586 | 
            +
                    return y[:, :-1], idx - 1
         | 
    	
        AR/models/t2s_model_onnx.py
    ADDED
    
    | @@ -0,0 +1,338 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            from tqdm import tqdm
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from AR.modules.embedding_onnx import SinePositionalEmbedding
         | 
| 7 | 
            +
            from AR.modules.embedding_onnx import TokenEmbedding
         | 
| 8 | 
            +
            from AR.modules.transformer_onnx import LayerNorm
         | 
| 9 | 
            +
            from AR.modules.transformer_onnx import TransformerEncoder
         | 
| 10 | 
            +
            from AR.modules.transformer_onnx import TransformerEncoderLayer
         | 
| 11 | 
            +
            from torch import nn
         | 
| 12 | 
            +
            from torch.nn import functional as F
         | 
| 13 | 
            +
            from torchmetrics.classification import MulticlassAccuracy
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            default_config = {
         | 
| 16 | 
            +
                "embedding_dim": 512,
         | 
| 17 | 
            +
                "hidden_dim": 512,
         | 
| 18 | 
            +
                "num_head": 8,
         | 
| 19 | 
            +
                "num_layers": 12,
         | 
| 20 | 
            +
                "num_codebook": 8,
         | 
| 21 | 
            +
                "p_dropout": 0.0,
         | 
| 22 | 
            +
                "vocab_size": 1024 + 1,
         | 
| 23 | 
            +
                "phoneme_vocab_size": 512,
         | 
| 24 | 
            +
                "EOS": 1024,
         | 
| 25 | 
            +
            }
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            def logits_to_probs(
         | 
| 30 | 
            +
                logits,
         | 
| 31 | 
            +
                previous_tokens = None,
         | 
| 32 | 
            +
                temperature: float = 1.0,
         | 
| 33 | 
            +
                top_k = None,
         | 
| 34 | 
            +
                top_p = None,
         | 
| 35 | 
            +
                repetition_penalty: float = 1.0,
         | 
| 36 | 
            +
            ):
         | 
| 37 | 
            +
                previous_tokens = previous_tokens.squeeze()
         | 
| 38 | 
            +
                if previous_tokens is not None and repetition_penalty != 1.0:
         | 
| 39 | 
            +
                    previous_tokens = previous_tokens.long()
         | 
| 40 | 
            +
                    score = torch.gather(logits, dim=0, index=previous_tokens)
         | 
| 41 | 
            +
                    score = torch.where(
         | 
| 42 | 
            +
                        score < 0, score * repetition_penalty, score / repetition_penalty
         | 
| 43 | 
            +
                    )
         | 
| 44 | 
            +
                    logits.scatter_(dim=0, index=previous_tokens, src=score)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                if top_p is not None and top_p < 1.0:
         | 
| 47 | 
            +
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
         | 
| 48 | 
            +
                    cum_probs = torch.cumsum(
         | 
| 49 | 
            +
                        torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
         | 
| 50 | 
            +
                    )
         | 
| 51 | 
            +
                    sorted_indices_to_remove = cum_probs > top_p
         | 
| 52 | 
            +
                    sorted_indices_to_remove[0] = False  # keep at least one option
         | 
| 53 | 
            +
                    indices_to_remove = sorted_indices_to_remove.scatter(
         | 
| 54 | 
            +
                        dim=0, index=sorted_indices, src=sorted_indices_to_remove
         | 
| 55 | 
            +
                    )
         | 
| 56 | 
            +
                    logits = logits.masked_fill(indices_to_remove, -float("Inf"))
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                logits = logits / max(temperature, 1e-5)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                if top_k is not None:
         | 
| 61 | 
            +
                    v, _ = torch.topk(logits, top_k)
         | 
| 62 | 
            +
                    pivot = v.select(-1, -1).unsqueeze(-1)
         | 
| 63 | 
            +
                    logits = torch.where(logits < pivot, inf_tensor_value, logits)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                probs = torch.nn.functional.softmax(logits, dim=-1)
         | 
| 66 | 
            +
                return probs
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            def multinomial_sample_one_no_sync(
         | 
| 70 | 
            +
                probs_sort
         | 
| 71 | 
            +
            ):  # Does multinomial sampling without a cuda synchronization
         | 
| 72 | 
            +
                q = torch.randn_like(probs_sort)
         | 
| 73 | 
            +
                return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            def sample(
         | 
| 77 | 
            +
                logits,
         | 
| 78 | 
            +
                previous_tokens,
         | 
| 79 | 
            +
                **sampling_kwargs,
         | 
| 80 | 
            +
            ):
         | 
| 81 | 
            +
                probs = logits_to_probs(
         | 
| 82 | 
            +
                    logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
         | 
| 83 | 
            +
                )
         | 
| 84 | 
            +
                idx_next = multinomial_sample_one_no_sync(probs)
         | 
| 85 | 
            +
                return idx_next, probs
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            class OnnxEncoder(nn.Module):
         | 
| 89 | 
            +
                def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
         | 
| 90 | 
            +
                    super().__init__()
         | 
| 91 | 
            +
                    self.ar_text_embedding = ar_text_embedding
         | 
| 92 | 
            +
                    self.bert_proj = bert_proj
         | 
| 93 | 
            +
                    self.ar_text_position = ar_text_position
         | 
| 94 | 
            +
                
         | 
| 95 | 
            +
                def forward(self, x, bert_feature):
         | 
| 96 | 
            +
                    x = self.ar_text_embedding(x)
         | 
| 97 | 
            +
                    x = x + self.bert_proj(bert_feature.transpose(1, 2))
         | 
| 98 | 
            +
                    return self.ar_text_position(x)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
            class T2SFirstStageDecoder(nn.Module):
         | 
| 102 | 
            +
                def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
         | 
| 103 | 
            +
                top_k, early_stop_num, num_layers):
         | 
| 104 | 
            +
                    super().__init__()
         | 
| 105 | 
            +
                    self.ar_audio_embedding = ar_audio_embedding
         | 
| 106 | 
            +
                    self.ar_audio_position = ar_audio_position
         | 
| 107 | 
            +
                    self.h = h
         | 
| 108 | 
            +
                    self.ar_predict_layer = ar_predict_layer
         | 
| 109 | 
            +
                    self.loss_fct = loss_fct
         | 
| 110 | 
            +
                    self.ar_accuracy_metric = ar_accuracy_metric
         | 
| 111 | 
            +
                    self.top_k = top_k
         | 
| 112 | 
            +
                    self.early_stop_num = early_stop_num
         | 
| 113 | 
            +
                    self.num_layers = num_layers
         | 
| 114 | 
            +
                
         | 
| 115 | 
            +
                def forward(self, x, prompt):
         | 
| 116 | 
            +
                    y = prompt
         | 
| 117 | 
            +
                    x_example = x[:,:,0] * 0.0
         | 
| 118 | 
            +
                    #N, 1, 512
         | 
| 119 | 
            +
                    cache = {
         | 
| 120 | 
            +
                        "all_stage": self.num_layers,
         | 
| 121 | 
            +
                        "k": None,
         | 
| 122 | 
            +
                        "v": None,
         | 
| 123 | 
            +
                        "y_emb": None,
         | 
| 124 | 
            +
                        "first_infer": 1,
         | 
| 125 | 
            +
                        "stage": 0,
         | 
| 126 | 
            +
                    }
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    y_emb = self.ar_audio_embedding(y)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    cache["y_emb"] = y_emb
         | 
| 131 | 
            +
                    y_pos = self.ar_audio_position(y_emb)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    xy_pos = torch.concat([x, y_pos], dim=1)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    y_example = y_pos[:,:,0] * 0.0
         | 
| 136 | 
            +
                    x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
         | 
| 137 | 
            +
                    y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
         | 
| 138 | 
            +
                    y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
         | 
| 139 | 
            +
                        torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
         | 
| 140 | 
            +
                    )
         | 
| 141 | 
            +
                    y_attn_mask = y_attn_mask > 0
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
         | 
| 144 | 
            +
                    y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
         | 
| 145 | 
            +
                    x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
         | 
| 146 | 
            +
                    y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
         | 
| 147 | 
            +
                    xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
         | 
| 148 | 
            +
                    cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
         | 
| 149 | 
            +
                    .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
         | 
| 150 | 
            +
                    cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
         | 
| 151 | 
            +
                    .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
         | 
| 154 | 
            +
                    logits = self.ar_predict_layer(xy_dec[:, -1])
         | 
| 155 | 
            +
                    samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    y = torch.concat([y, samples], dim=1)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    return y, cache["k"], cache["v"], cache["y_emb"], x_example
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
            class T2SStageDecoder(nn.Module):
         | 
| 163 | 
            +
                def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
         | 
| 164 | 
            +
                top_k, early_stop_num, num_layers):
         | 
| 165 | 
            +
                    super().__init__()
         | 
| 166 | 
            +
                    self.ar_audio_embedding = ar_audio_embedding
         | 
| 167 | 
            +
                    self.ar_audio_position = ar_audio_position
         | 
| 168 | 
            +
                    self.h = h
         | 
| 169 | 
            +
                    self.ar_predict_layer = ar_predict_layer
         | 
| 170 | 
            +
                    self.loss_fct = loss_fct
         | 
| 171 | 
            +
                    self.ar_accuracy_metric = ar_accuracy_metric
         | 
| 172 | 
            +
                    self.top_k = top_k
         | 
| 173 | 
            +
                    self.early_stop_num = early_stop_num
         | 
| 174 | 
            +
                    self.num_layers = num_layers
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def forward(self, y, k, v, y_emb, x_example):
         | 
| 177 | 
            +
                    cache = {
         | 
| 178 | 
            +
                        "all_stage": self.num_layers,
         | 
| 179 | 
            +
                        "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
         | 
| 180 | 
            +
                        "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
         | 
| 181 | 
            +
                        "y_emb": y_emb,
         | 
| 182 | 
            +
                        "first_infer": 0,
         | 
| 183 | 
            +
                        "stage": 0,
         | 
| 184 | 
            +
                    }
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    y_emb = torch.cat(
         | 
| 187 | 
            +
                        [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
         | 
| 188 | 
            +
                    )
         | 
| 189 | 
            +
                    cache["y_emb"] = y_emb
         | 
| 190 | 
            +
                    y_pos = self.ar_audio_position(y_emb)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    xy_pos = y_pos[:, -1:]
         | 
| 193 | 
            +
                    
         | 
| 194 | 
            +
                    y_example = y_pos[:,:,0] * 0.0
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    xy_attn_mask = torch.cat([x_example, y_example], dim=1)
         | 
| 197 | 
            +
                    xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
         | 
| 200 | 
            +
                    logits = self.ar_predict_layer(xy_dec[:, -1])
         | 
| 201 | 
            +
                    samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    y = torch.concat([y, samples], dim=1)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
         | 
| 206 | 
            +
             | 
| 207 | 
            +
             | 
| 208 | 
            +
            class Text2SemanticDecoder(nn.Module):
         | 
| 209 | 
            +
                def __init__(self, config, norm_first=False, top_k=3):
         | 
| 210 | 
            +
                    super(Text2SemanticDecoder, self).__init__()
         | 
| 211 | 
            +
                    self.model_dim = config["model"]["hidden_dim"]
         | 
| 212 | 
            +
                    self.embedding_dim = config["model"]["embedding_dim"]
         | 
| 213 | 
            +
                    self.num_head = config["model"]["head"]
         | 
| 214 | 
            +
                    self.num_layers = config["model"]["n_layer"]
         | 
| 215 | 
            +
                    self.norm_first = norm_first
         | 
| 216 | 
            +
                    self.vocab_size = config["model"]["vocab_size"]
         | 
| 217 | 
            +
                    self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
         | 
| 218 | 
            +
                    self.p_dropout = float(config["model"]["dropout"])
         | 
| 219 | 
            +
                    self.EOS = config["model"]["EOS"]
         | 
| 220 | 
            +
                    self.norm_first = norm_first
         | 
| 221 | 
            +
                    assert self.EOS == self.vocab_size - 1
         | 
| 222 | 
            +
                    self.bert_proj = nn.Linear(1024, self.embedding_dim)
         | 
| 223 | 
            +
                    self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
         | 
| 224 | 
            +
                    self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
         | 
| 225 | 
            +
                    self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
         | 
| 226 | 
            +
                    self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
         | 
| 227 | 
            +
                    self.h = TransformerEncoder(
         | 
| 228 | 
            +
                        TransformerEncoderLayer(
         | 
| 229 | 
            +
                            d_model=self.model_dim,
         | 
| 230 | 
            +
                            nhead=self.num_head,
         | 
| 231 | 
            +
                            dim_feedforward=self.model_dim * 4,
         | 
| 232 | 
            +
                            dropout=0.1,
         | 
| 233 | 
            +
                            batch_first=True,
         | 
| 234 | 
            +
                            norm_first=norm_first,
         | 
| 235 | 
            +
                        ),
         | 
| 236 | 
            +
                        num_layers=self.num_layers,
         | 
| 237 | 
            +
                        norm=LayerNorm(self.model_dim) if norm_first else None,
         | 
| 238 | 
            +
                    )
         | 
| 239 | 
            +
                    self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
         | 
| 240 | 
            +
                    self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
         | 
| 241 | 
            +
                    self.ar_accuracy_metric = MulticlassAccuracy(
         | 
| 242 | 
            +
                        self.vocab_size,
         | 
| 243 | 
            +
                        top_k=top_k,
         | 
| 244 | 
            +
                        average="micro",
         | 
| 245 | 
            +
                        multidim_average="global",
         | 
| 246 | 
            +
                        ignore_index=self.EOS,
         | 
| 247 | 
            +
                    )
         | 
| 248 | 
            +
                    self.top_k = torch.LongTensor([1])
         | 
| 249 | 
            +
                    self.early_stop_num = torch.LongTensor([-1])
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def init_onnx(self):
         | 
| 252 | 
            +
                    self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
         | 
| 253 | 
            +
                    self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, 
         | 
| 254 | 
            +
                        self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
         | 
| 255 | 
            +
                        self.num_layers)
         | 
| 256 | 
            +
                    self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, 
         | 
| 257 | 
            +
                        self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
         | 
| 258 | 
            +
                        self.num_layers)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                def forward(self, x, prompts, bert_feature):
         | 
| 261 | 
            +
                    early_stop_num = self.early_stop_num
         | 
| 262 | 
            +
                    prefix_len = prompts.shape[1]
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    x = self.onnx_encoder(x, bert_feature)
         | 
| 265 | 
            +
                    y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    stop = False
         | 
| 268 | 
            +
                    for idx in range(1, 1500):
         | 
| 269 | 
            +
                        enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
         | 
| 270 | 
            +
                        y, k, v, y_emb, stage, logits, samples = enco
         | 
| 271 | 
            +
                        if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
         | 
| 272 | 
            +
                            stop = True
         | 
| 273 | 
            +
                        if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
         | 
| 274 | 
            +
                            stop = True
         | 
| 275 | 
            +
                        if stop:
         | 
| 276 | 
            +
                            break
         | 
| 277 | 
            +
                    y[0, -1] = 0
         | 
| 278 | 
            +
                    return y, idx
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                def infer(self, x, prompts, bert_feature):
         | 
| 281 | 
            +
                    top_k = self.top_k
         | 
| 282 | 
            +
                    early_stop_num = self.early_stop_num
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    x = self.onnx_encoder(x, bert_feature)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    y = prompts
         | 
| 287 | 
            +
                    prefix_len = y.shape[1]
         | 
| 288 | 
            +
                    x_len = x.shape[1]
         | 
| 289 | 
            +
                    x_example = x[:,:,0] * 0.0
         | 
| 290 | 
            +
                    x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
         | 
| 291 | 
            +
                    x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    stop = False
         | 
| 294 | 
            +
                    cache = {
         | 
| 295 | 
            +
                        "all_stage": self.num_layers,
         | 
| 296 | 
            +
                        "k": [None] * self.num_layers,
         | 
| 297 | 
            +
                        "v": [None] * self.num_layers,
         | 
| 298 | 
            +
                        "y_emb": None,
         | 
| 299 | 
            +
                        "first_infer": 1,
         | 
| 300 | 
            +
                        "stage": 0,
         | 
| 301 | 
            +
                    }
         | 
| 302 | 
            +
                    for idx in range(1500):
         | 
| 303 | 
            +
                        if cache["first_infer"] == 1:
         | 
| 304 | 
            +
                            y_emb = self.ar_audio_embedding(y)
         | 
| 305 | 
            +
                        else:
         | 
| 306 | 
            +
                            y_emb = torch.cat(
         | 
| 307 | 
            +
                                [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
         | 
| 308 | 
            +
                            )
         | 
| 309 | 
            +
                        cache["y_emb"] = y_emb
         | 
| 310 | 
            +
                        y_pos = self.ar_audio_position(y_emb)
         | 
| 311 | 
            +
                        if cache["first_infer"] == 1:
         | 
| 312 | 
            +
                            xy_pos = torch.concat([x, y_pos], dim=1)
         | 
| 313 | 
            +
                        else:
         | 
| 314 | 
            +
                            xy_pos = y_pos[:, -1:]
         | 
| 315 | 
            +
                        y_len = y_pos.shape[1]
         | 
| 316 | 
            +
                        if cache["first_infer"] == 1:
         | 
| 317 | 
            +
                            x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
         | 
| 318 | 
            +
                            y_attn_mask = F.pad(
         | 
| 319 | 
            +
                                torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
         | 
| 320 | 
            +
                                (x_len, 0), value=False
         | 
| 321 | 
            +
                            )
         | 
| 322 | 
            +
                            xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
         | 
| 323 | 
            +
                        else:
         | 
| 324 | 
            +
                            xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
         | 
| 325 | 
            +
                        xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
         | 
| 326 | 
            +
                        logits = self.ar_predict_layer(xy_dec[:, -1])
         | 
| 327 | 
            +
                        samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
         | 
| 328 | 
            +
                        if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
         | 
| 329 | 
            +
                            stop = True
         | 
| 330 | 
            +
                        if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
         | 
| 331 | 
            +
                            stop = True
         | 
| 332 | 
            +
                        if stop:
         | 
| 333 | 
            +
                            if prompts.shape[1] == y.shape[1]:
         | 
| 334 | 
            +
                                y = torch.concat([y, torch.zeros_like(samples)], dim=1)
         | 
| 335 | 
            +
                            break
         | 
| 336 | 
            +
                        y = torch.concat([y, samples], dim=1)
         | 
| 337 | 
            +
                        cache["first_infer"] = 0
         | 
| 338 | 
            +
                    return y, idx
         | 
    	
        AR/models/utils.py
    ADDED
    
    | @@ -0,0 +1,229 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn.functional as F
         | 
| 5 | 
            +
            from typing import Tuple
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            def sequence_mask(length, max_length=None):
         | 
| 8 | 
            +
                if max_length is None:
         | 
| 9 | 
            +
                    max_length = length.max()
         | 
| 10 | 
            +
                x = torch.arange(max_length, dtype=length.dtype, device=length.device)
         | 
| 11 | 
            +
                return x.unsqueeze(0) < length.unsqueeze(1)
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
         | 
| 15 | 
            +
                """
         | 
| 16 | 
            +
                Args:
         | 
| 17 | 
            +
                  lengths:
         | 
| 18 | 
            +
                    A 1-D tensor containing sentence lengths.
         | 
| 19 | 
            +
                  max_len:
         | 
| 20 | 
            +
                    The length of masks.
         | 
| 21 | 
            +
                Returns:
         | 
| 22 | 
            +
                  Return a 2-D bool tensor, where masked positions
         | 
| 23 | 
            +
                  are filled with `True` and non-masked positions are
         | 
| 24 | 
            +
                  filled with `False`.
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                #>>> lengths = torch.tensor([1, 3, 2, 5])
         | 
| 27 | 
            +
                #>>> make_pad_mask(lengths)
         | 
| 28 | 
            +
                tensor([[False,  True,  True,  True,  True],
         | 
| 29 | 
            +
                        [False, False, False,  True,  True],
         | 
| 30 | 
            +
                        [False, False,  True,  True,  True],
         | 
| 31 | 
            +
                        [False, False, False, False, False]])
         | 
| 32 | 
            +
                """
         | 
| 33 | 
            +
                assert lengths.ndim == 1, lengths.ndim
         | 
| 34 | 
            +
                max_len = max(max_len, lengths.max())
         | 
| 35 | 
            +
                n = lengths.size(0)
         | 
| 36 | 
            +
                seq_range = torch.arange(0, max_len, device=lengths.device)
         | 
| 37 | 
            +
                expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                return expaned_lengths >= lengths.unsqueeze(-1)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            # https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
         | 
| 43 | 
            +
            def top_k_top_p_filtering(
         | 
| 44 | 
            +
                logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
         | 
| 45 | 
            +
            ):
         | 
| 46 | 
            +
                """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
         | 
| 47 | 
            +
                Args:
         | 
| 48 | 
            +
                    logits: logits distribution shape (batch size, vocabulary size)
         | 
| 49 | 
            +
                    if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
         | 
| 50 | 
            +
                    if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
         | 
| 51 | 
            +
                        Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
         | 
| 52 | 
            +
                    Make sure we keep at least min_tokens_to_keep per batch example in the output
         | 
| 53 | 
            +
                From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
         | 
| 54 | 
            +
                """
         | 
| 55 | 
            +
                if top_k > 0:
         | 
| 56 | 
            +
                    top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
         | 
| 57 | 
            +
                    # Remove all tokens with a probability less than the last token of the top-k
         | 
| 58 | 
            +
                    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
         | 
| 59 | 
            +
                    logits[indices_to_remove] = filter_value
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                if top_p < 1.0:
         | 
| 62 | 
            +
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
         | 
| 63 | 
            +
                    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                    # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
         | 
| 66 | 
            +
                    sorted_indices_to_remove = cumulative_probs > top_p
         | 
| 67 | 
            +
                    if min_tokens_to_keep > 1:
         | 
| 68 | 
            +
                        # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
         | 
| 69 | 
            +
                        sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
         | 
| 70 | 
            +
                    # Shift the indices to the right to keep also the first token above the threshold
         | 
| 71 | 
            +
                    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
         | 
| 72 | 
            +
                    sorted_indices_to_remove[..., 0] = 0
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    # scatter sorted tensors to original indexing
         | 
| 75 | 
            +
                    indices_to_remove = sorted_indices_to_remove.scatter(
         | 
| 76 | 
            +
                        1, sorted_indices, sorted_indices_to_remove
         | 
| 77 | 
            +
                    )
         | 
| 78 | 
            +
                    logits[indices_to_remove] = filter_value
         | 
| 79 | 
            +
                return logits
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
         | 
| 83 | 
            +
                # temperature: (`optional`) float
         | 
| 84 | 
            +
                #     The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
         | 
| 85 | 
            +
                # top_k: (`optional`) int
         | 
| 86 | 
            +
                #     The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
         | 
| 87 | 
            +
                # top_p: (`optional`) float
         | 
| 88 | 
            +
                #     The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                # Temperature (higher temperature => more likely to sample low probability tokens)
         | 
| 91 | 
            +
                if temperature != 1.0:
         | 
| 92 | 
            +
                    logits = logits / temperature
         | 
| 93 | 
            +
                # Top-p/top-k filtering
         | 
| 94 | 
            +
                logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
         | 
| 95 | 
            +
                # Sample
         | 
| 96 | 
            +
                token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
         | 
| 97 | 
            +
                return token
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            from typing import Optional, Tuple
         | 
| 101 | 
            +
             | 
| 102 | 
            +
             | 
| 103 | 
            +
            def multinomial_sample_one_no_sync(
         | 
| 104 | 
            +
                probs_sort,
         | 
| 105 | 
            +
            ):  # Does multinomial sampling without a cuda synchronization
         | 
| 106 | 
            +
                q = torch.empty_like(probs_sort).exponential_(1)
         | 
| 107 | 
            +
                return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
             | 
| 110 | 
            +
            def logits_to_probs(
         | 
| 111 | 
            +
                logits,
         | 
| 112 | 
            +
                previous_tokens: Optional[torch.Tensor] = None,
         | 
| 113 | 
            +
                temperature: float = 1.0,
         | 
| 114 | 
            +
                top_k: Optional[int] = None,
         | 
| 115 | 
            +
                top_p: Optional[int] = None,
         | 
| 116 | 
            +
                repetition_penalty: float = 1.0,
         | 
| 117 | 
            +
            ):
         | 
| 118 | 
            +
                if previous_tokens is not None:
         | 
| 119 | 
            +
                    previous_tokens = previous_tokens.squeeze()
         | 
| 120 | 
            +
                # print(logits.shape,previous_tokens.shape)
         | 
| 121 | 
            +
                # pdb.set_trace()
         | 
| 122 | 
            +
                if previous_tokens is not None and repetition_penalty != 1.0:
         | 
| 123 | 
            +
                    previous_tokens = previous_tokens.long()
         | 
| 124 | 
            +
                    score = torch.gather(logits, dim=0, index=previous_tokens)
         | 
| 125 | 
            +
                    score = torch.where(
         | 
| 126 | 
            +
                        score < 0, score * repetition_penalty, score / repetition_penalty
         | 
| 127 | 
            +
                    )
         | 
| 128 | 
            +
                    logits.scatter_(dim=0, index=previous_tokens, src=score)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                if top_p is not None and top_p < 1.0:
         | 
| 131 | 
            +
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
         | 
| 132 | 
            +
                    cum_probs = torch.cumsum(
         | 
| 133 | 
            +
                        torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
         | 
| 134 | 
            +
                    )
         | 
| 135 | 
            +
                    sorted_indices_to_remove = cum_probs > top_p
         | 
| 136 | 
            +
                    sorted_indices_to_remove[0] = False  # keep at least one option
         | 
| 137 | 
            +
                    indices_to_remove = sorted_indices_to_remove.scatter(
         | 
| 138 | 
            +
                        dim=0, index=sorted_indices, src=sorted_indices_to_remove
         | 
| 139 | 
            +
                    )
         | 
| 140 | 
            +
                    logits = logits.masked_fill(indices_to_remove, -float("Inf"))
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                logits = logits / max(temperature, 1e-5)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                if top_k is not None:
         | 
| 145 | 
            +
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
         | 
| 146 | 
            +
                    pivot = v.select(-1, -1).unsqueeze(-1)
         | 
| 147 | 
            +
                    logits = torch.where(logits < pivot, -float("Inf"), logits)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                probs = torch.nn.functional.softmax(logits, dim=-1)
         | 
| 150 | 
            +
                return probs
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            def sample(
         | 
| 154 | 
            +
                logits,
         | 
| 155 | 
            +
                previous_tokens: Optional[torch.Tensor] = None,
         | 
| 156 | 
            +
                **sampling_kwargs,
         | 
| 157 | 
            +
            ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 158 | 
            +
                probs = logits_to_probs(
         | 
| 159 | 
            +
                    logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
         | 
| 160 | 
            +
                )
         | 
| 161 | 
            +
                idx_next = multinomial_sample_one_no_sync(probs)
         | 
| 162 | 
            +
                return idx_next, probs
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            def dpo_loss(policy_chosen_logps: torch.FloatTensor,
         | 
| 165 | 
            +
                         policy_rejected_logps: torch.FloatTensor,
         | 
| 166 | 
            +
                         reference_chosen_logps: torch.FloatTensor,
         | 
| 167 | 
            +
                         reference_rejected_logps: torch.FloatTensor,
         | 
| 168 | 
            +
                         beta: float,
         | 
| 169 | 
            +
                         reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
         | 
| 170 | 
            +
                pi_logratios = policy_chosen_logps - policy_rejected_logps
         | 
| 171 | 
            +
                ref_logratios = reference_chosen_logps - reference_rejected_logps
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                if reference_free:
         | 
| 174 | 
            +
                    ref_logratios = 0
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                logits = pi_logratios - ref_logratios
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                losses = -F.logsigmoid(beta * logits)
         | 
| 179 | 
            +
                chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
         | 
| 180 | 
            +
                rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                return losses.mean(), chosen_rewards, rejected_rewards
         | 
| 183 | 
            +
             | 
| 184 | 
            +
            def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                # dummy token; we'll ignore the losses on these tokens later
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2)
         | 
| 189 | 
            +
                per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            def make_reject_y(y_o, y_lens):
         | 
| 194 | 
            +
                def repeat_P(y):
         | 
| 195 | 
            +
                    range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
         | 
| 196 | 
            +
                    pre = y[:range_idx[0]]
         | 
| 197 | 
            +
                    shf = y[range_idx[1]:]
         | 
| 198 | 
            +
                    range_text = y[range_idx[0]:range_idx[1]]
         | 
| 199 | 
            +
                    new_y = torch.cat([pre, range_text, range_text, shf])
         | 
| 200 | 
            +
                    return new_y
         | 
| 201 | 
            +
                def lost_P(y):
         | 
| 202 | 
            +
                    range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
         | 
| 203 | 
            +
                    pre = y[:range_idx[0]]
         | 
| 204 | 
            +
                    shf = y[range_idx[1]:]
         | 
| 205 | 
            +
                    range_text = y[range_idx[0]:range_idx[1]]
         | 
| 206 | 
            +
                    new_y = torch.cat([pre, shf])
         | 
| 207 | 
            +
                    return new_y
         | 
| 208 | 
            +
                bs = len(y_lens)
         | 
| 209 | 
            +
                reject_y = []
         | 
| 210 | 
            +
                reject_y_lens = []
         | 
| 211 | 
            +
                for b in range(bs):
         | 
| 212 | 
            +
                    process_item_idx = torch.randint(0, 1, size=(1, ))[0]
         | 
| 213 | 
            +
                    if process_item_idx == 0:
         | 
| 214 | 
            +
                        new_y = repeat_P(y_o[b])
         | 
| 215 | 
            +
                        reject_y.append(new_y)
         | 
| 216 | 
            +
                        reject_y_lens.append(len(new_y))
         | 
| 217 | 
            +
                    elif process_item_idx==1:
         | 
| 218 | 
            +
                        new_y = lost_P(y_o[b])
         | 
| 219 | 
            +
                        reject_y.append(new_y)
         | 
| 220 | 
            +
                        reject_y_lens.append(len(new_y))
         | 
| 221 | 
            +
                max_length = max(reject_y_lens)
         | 
| 222 | 
            +
                for b in range(bs):
         | 
| 223 | 
            +
                    pad_length = max_length - reject_y_lens[b]
         | 
| 224 | 
            +
                    reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                reject_y = torch.stack(reject_y, dim = 0)
         | 
| 227 | 
            +
                reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                return reject_y, reject_y_lens
         | 
    	
        AR/modules/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        AR/modules/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | Binary file (181 Bytes). View file | 
|  | 
    	
        AR/modules/__pycache__/activation.cpython-39.pyc
    ADDED
    
    | Binary file (14 kB). View file | 
|  | 
    	
        AR/modules/__pycache__/embedding.cpython-39.pyc
    ADDED
    
    | Binary file (3.08 kB). View file | 
|  | 
    	
        AR/modules/__pycache__/lr_schedulers.cpython-39.pyc
    ADDED
    
    | Binary file (2.4 kB). View file | 
|  | 
    	
        AR/modules/__pycache__/optim.cpython-39.pyc
    ADDED
    
    | Binary file (18.9 kB). View file | 
|  | 
    	
        AR/modules/__pycache__/patched_mha_with_cache.cpython-39.pyc
    ADDED
    
    | Binary file (11.3 kB). View file | 
|  | 
    	
        AR/modules/__pycache__/scaling.cpython-39.pyc
    ADDED
    
    | Binary file (9.54 kB). View file | 
|  | 
    	
        AR/modules/__pycache__/transformer.cpython-39.pyc
    ADDED
    
    | Binary file (9.82 kB). View file | 
|  | 
    	
        AR/modules/activation.py
    ADDED
    
    | @@ -0,0 +1,428 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
         | 
| 2 | 
            +
            from typing import Optional
         | 
| 3 | 
            +
            from typing import Tuple
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from torch import Tensor
         | 
| 6 | 
            +
            from torch.nn import Linear
         | 
| 7 | 
            +
            from torch.nn import Module
         | 
| 8 | 
            +
            from torch.nn.init import constant_
         | 
| 9 | 
            +
            from torch.nn.init import xavier_normal_
         | 
| 10 | 
            +
            from torch.nn.init import xavier_uniform_
         | 
| 11 | 
            +
            from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
         | 
| 12 | 
            +
            from torch.nn.parameter import Parameter
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from torch.nn import functional as F
         | 
| 15 | 
            +
            from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            F.multi_head_attention_forward = multi_head_attention_forward_patched
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            class MultiheadAttention(Module):
         | 
| 21 | 
            +
                r"""Allows the model to jointly attend to information
         | 
| 22 | 
            +
                from different representation subspaces as described in the paper:
         | 
| 23 | 
            +
                `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                Multi-Head Attention is defined as:
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                .. math::
         | 
| 28 | 
            +
                    \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                ``forward()`` will use a special optimized implementation if all of the following
         | 
| 33 | 
            +
                conditions are met:
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
         | 
| 36 | 
            +
                  restriction will be loosened in the future.)
         | 
| 37 | 
            +
                - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
         | 
| 38 | 
            +
                - training is disabled (using ``.eval()``)
         | 
| 39 | 
            +
                - dropout is 0
         | 
| 40 | 
            +
                - ``add_bias_kv`` is ``False``
         | 
| 41 | 
            +
                - ``add_zero_attn`` is ``False``
         | 
| 42 | 
            +
                - ``batch_first`` is ``True`` and the input is batched
         | 
| 43 | 
            +
                - ``kdim`` and ``vdim`` are equal to ``embed_dim``
         | 
| 44 | 
            +
                - at most one of ``key_padding_mask`` or ``attn_mask`` is passed
         | 
| 45 | 
            +
                - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
         | 
| 46 | 
            +
                  nor ``attn_mask`` is passed
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                If the optimized implementation is in use, a
         | 
| 49 | 
            +
                `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
         | 
| 50 | 
            +
                ``query``/``key``/``value`` to represent padding more efficiently than using a
         | 
| 51 | 
            +
                padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
         | 
| 52 | 
            +
                will be returned, and an additional speedup proportional to the fraction of the input
         | 
| 53 | 
            +
                that is padding can be expected.
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                Args:
         | 
| 56 | 
            +
                    embed_dim: Total dimension of the model.
         | 
| 57 | 
            +
                    num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
         | 
| 58 | 
            +
                        across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
         | 
| 59 | 
            +
                    dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
         | 
| 60 | 
            +
                    bias: If specified, adds bias to input / output projection layers. Default: ``True``.
         | 
| 61 | 
            +
                    add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
         | 
| 62 | 
            +
                    add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
         | 
| 63 | 
            +
                        Default: ``False``.
         | 
| 64 | 
            +
                    kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
         | 
| 65 | 
            +
                    vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
         | 
| 66 | 
            +
                    batch_first: If ``True``, then the input and output tensors are provided
         | 
| 67 | 
            +
                        as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                Examples::
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    >>> # xdoctest: +SKIP
         | 
| 72 | 
            +
                    >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
         | 
| 73 | 
            +
                    >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                """
         | 
| 76 | 
            +
                __constants__ = ["batch_first"]
         | 
| 77 | 
            +
                bias_k: Optional[torch.Tensor]
         | 
| 78 | 
            +
                bias_v: Optional[torch.Tensor]
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def __init__(
         | 
| 81 | 
            +
                    self,
         | 
| 82 | 
            +
                    embed_dim,
         | 
| 83 | 
            +
                    num_heads,
         | 
| 84 | 
            +
                    dropout=0.0,
         | 
| 85 | 
            +
                    bias=True,
         | 
| 86 | 
            +
                    add_bias_kv=False,
         | 
| 87 | 
            +
                    add_zero_attn=False,
         | 
| 88 | 
            +
                    kdim=None,
         | 
| 89 | 
            +
                    vdim=None,
         | 
| 90 | 
            +
                    batch_first=False,
         | 
| 91 | 
            +
                    linear1_cls=Linear,
         | 
| 92 | 
            +
                    linear2_cls=Linear,
         | 
| 93 | 
            +
                    device=None,
         | 
| 94 | 
            +
                    dtype=None,
         | 
| 95 | 
            +
                ) -> None:
         | 
| 96 | 
            +
                    factory_kwargs = {"device": device, "dtype": dtype}
         | 
| 97 | 
            +
                    super(MultiheadAttention, self).__init__()
         | 
| 98 | 
            +
                    self.embed_dim = embed_dim
         | 
| 99 | 
            +
                    self.kdim = kdim if kdim is not None else embed_dim
         | 
| 100 | 
            +
                    self.vdim = vdim if vdim is not None else embed_dim
         | 
| 101 | 
            +
                    self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    self.num_heads = num_heads
         | 
| 104 | 
            +
                    self.dropout = dropout
         | 
| 105 | 
            +
                    self.batch_first = batch_first
         | 
| 106 | 
            +
                    self.head_dim = embed_dim // num_heads
         | 
| 107 | 
            +
                    assert (
         | 
| 108 | 
            +
                        self.head_dim * num_heads == self.embed_dim
         | 
| 109 | 
            +
                    ), "embed_dim must be divisible by num_heads"
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    if add_bias_kv:
         | 
| 112 | 
            +
                        self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
         | 
| 113 | 
            +
                        self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
         | 
| 114 | 
            +
                    else:
         | 
| 115 | 
            +
                        self.bias_k = self.bias_v = None
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    if linear1_cls == Linear:
         | 
| 118 | 
            +
                        if not self._qkv_same_embed_dim:
         | 
| 119 | 
            +
                            self.q_proj_weight = Parameter(
         | 
| 120 | 
            +
                                torch.empty((embed_dim, embed_dim), **factory_kwargs)
         | 
| 121 | 
            +
                            )
         | 
| 122 | 
            +
                            self.k_proj_weight = Parameter(
         | 
| 123 | 
            +
                                torch.empty((embed_dim, self.kdim), **factory_kwargs)
         | 
| 124 | 
            +
                            )
         | 
| 125 | 
            +
                            self.v_proj_weight = Parameter(
         | 
| 126 | 
            +
                                torch.empty((embed_dim, self.vdim), **factory_kwargs)
         | 
| 127 | 
            +
                            )
         | 
| 128 | 
            +
                            self.register_parameter("in_proj_weight", None)
         | 
| 129 | 
            +
                        else:
         | 
| 130 | 
            +
                            self.in_proj_weight = Parameter(
         | 
| 131 | 
            +
                                torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
         | 
| 132 | 
            +
                            )
         | 
| 133 | 
            +
                            self.register_parameter("q_proj_weight", None)
         | 
| 134 | 
            +
                            self.register_parameter("k_proj_weight", None)
         | 
| 135 | 
            +
                            self.register_parameter("v_proj_weight", None)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                        if bias:
         | 
| 138 | 
            +
                            self.in_proj_bias = Parameter(
         | 
| 139 | 
            +
                                torch.empty(3 * embed_dim, **factory_kwargs)
         | 
| 140 | 
            +
                            )
         | 
| 141 | 
            +
                        else:
         | 
| 142 | 
            +
                            self.register_parameter("in_proj_bias", None)
         | 
| 143 | 
            +
                        self.out_proj = NonDynamicallyQuantizableLinear(
         | 
| 144 | 
            +
                            embed_dim, embed_dim, bias=bias, **factory_kwargs
         | 
| 145 | 
            +
                        )
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                        self._reset_parameters()
         | 
| 148 | 
            +
                    else:
         | 
| 149 | 
            +
                        if not self._qkv_same_embed_dim:
         | 
| 150 | 
            +
                            raise NotImplementedError
         | 
| 151 | 
            +
                        else:
         | 
| 152 | 
            +
                            self.in_proj_linear = linear1_cls(
         | 
| 153 | 
            +
                                embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
         | 
| 154 | 
            +
                            )
         | 
| 155 | 
            +
                            self.in_proj_weight = self.in_proj_linear.weight
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                            self.register_parameter("q_proj_weight", None)
         | 
| 158 | 
            +
                            self.register_parameter("k_proj_weight", None)
         | 
| 159 | 
            +
                            self.register_parameter("v_proj_weight", None)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                            if bias:
         | 
| 162 | 
            +
                                self.in_proj_bias = self.in_proj_linear.bias
         | 
| 163 | 
            +
                            else:
         | 
| 164 | 
            +
                                self.register_parameter("in_proj_bias", None)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                        self.out_proj = linear2_cls(
         | 
| 167 | 
            +
                            embed_dim, embed_dim, bias=bias, **factory_kwargs
         | 
| 168 | 
            +
                        )
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                        if self.bias_k is not None:
         | 
| 171 | 
            +
                            xavier_normal_(self.bias_k)
         | 
| 172 | 
            +
                        if self.bias_v is not None:
         | 
| 173 | 
            +
                            xavier_normal_(self.bias_v)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    self.add_zero_attn = add_zero_attn
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def _reset_parameters(self):
         | 
| 178 | 
            +
                    if self._qkv_same_embed_dim:
         | 
| 179 | 
            +
                        xavier_uniform_(self.in_proj_weight)
         | 
| 180 | 
            +
                    else:
         | 
| 181 | 
            +
                        xavier_uniform_(self.q_proj_weight)
         | 
| 182 | 
            +
                        xavier_uniform_(self.k_proj_weight)
         | 
| 183 | 
            +
                        xavier_uniform_(self.v_proj_weight)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    if self.in_proj_bias is not None:
         | 
| 186 | 
            +
                        constant_(self.in_proj_bias, 0.0)
         | 
| 187 | 
            +
                        constant_(self.out_proj.bias, 0.0)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    if self.bias_k is not None:
         | 
| 190 | 
            +
                        xavier_normal_(self.bias_k)
         | 
| 191 | 
            +
                    if self.bias_v is not None:
         | 
| 192 | 
            +
                        xavier_normal_(self.bias_v)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                def __setstate__(self, state):
         | 
| 195 | 
            +
                    # Support loading old MultiheadAttention checkpoints generated by v1.1.0
         | 
| 196 | 
            +
                    if "_qkv_same_embed_dim" not in state:
         | 
| 197 | 
            +
                        state["_qkv_same_embed_dim"] = True
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    super(MultiheadAttention, self).__setstate__(state)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                def forward(
         | 
| 202 | 
            +
                    self,
         | 
| 203 | 
            +
                    query: Tensor,
         | 
| 204 | 
            +
                    key: Tensor,
         | 
| 205 | 
            +
                    value: Tensor,
         | 
| 206 | 
            +
                    key_padding_mask: Optional[Tensor] = None,
         | 
| 207 | 
            +
                    need_weights: bool = True,
         | 
| 208 | 
            +
                    attn_mask: Optional[Tensor] = None,
         | 
| 209 | 
            +
                    average_attn_weights: bool = True,
         | 
| 210 | 
            +
                    cache=None,
         | 
| 211 | 
            +
                ) -> Tuple[Tensor, Optional[Tensor]]:
         | 
| 212 | 
            +
                    r"""
         | 
| 213 | 
            +
                    Args:
         | 
| 214 | 
            +
                        query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
         | 
| 215 | 
            +
                            or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
         | 
| 216 | 
            +
                            :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
         | 
| 217 | 
            +
                            Queries are compared against key-value pairs to produce the output.
         | 
| 218 | 
            +
                            See "Attention Is All You Need" for more details.
         | 
| 219 | 
            +
                        key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
         | 
| 220 | 
            +
                            or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
         | 
| 221 | 
            +
                            :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
         | 
| 222 | 
            +
                            See "Attention Is All You Need" for more details.
         | 
| 223 | 
            +
                        value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
         | 
| 224 | 
            +
                            ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
         | 
| 225 | 
            +
                            sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
         | 
| 226 | 
            +
                            See "Attention Is All You Need" for more details.
         | 
| 227 | 
            +
                        key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
         | 
| 228 | 
            +
                            to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
         | 
| 229 | 
            +
                            Binary and byte masks are supported.
         | 
| 230 | 
            +
                            For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
         | 
| 231 | 
            +
                            the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
         | 
| 232 | 
            +
                        need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
         | 
| 233 | 
            +
                            Default: ``True``.
         | 
| 234 | 
            +
                        attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
         | 
| 235 | 
            +
                            :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
         | 
| 236 | 
            +
                            :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
         | 
| 237 | 
            +
                            broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
         | 
| 238 | 
            +
                            Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
         | 
| 239 | 
            +
                            corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
         | 
| 240 | 
            +
                            corresponding position is not allowed to attend. For a float mask, the mask values will be added to
         | 
| 241 | 
            +
                            the attention weight.
         | 
| 242 | 
            +
                        average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
         | 
| 243 | 
            +
                            heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
         | 
| 244 | 
            +
                            effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    Outputs:
         | 
| 247 | 
            +
                        - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
         | 
| 248 | 
            +
                          :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
         | 
| 249 | 
            +
                          where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
         | 
| 250 | 
            +
                          embedding dimension ``embed_dim``.
         | 
| 251 | 
            +
                        - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
         | 
| 252 | 
            +
                          returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
         | 
| 253 | 
            +
                          :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
         | 
| 254 | 
            +
                          :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
         | 
| 255 | 
            +
                          head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                        .. note::
         | 
| 258 | 
            +
                            `batch_first` argument is ignored for unbatched inputs.
         | 
| 259 | 
            +
                    """
         | 
| 260 | 
            +
                    is_batched = query.dim() == 3
         | 
| 261 | 
            +
                    if key_padding_mask is not None:
         | 
| 262 | 
            +
                        _kpm_dtype = key_padding_mask.dtype
         | 
| 263 | 
            +
                        if _kpm_dtype != torch.bool and not torch.is_floating_point(
         | 
| 264 | 
            +
                            key_padding_mask
         | 
| 265 | 
            +
                        ):
         | 
| 266 | 
            +
                            raise AssertionError(
         | 
| 267 | 
            +
                                "only bool and floating types of key_padding_mask are supported"
         | 
| 268 | 
            +
                            )
         | 
| 269 | 
            +
                    why_not_fast_path = ""
         | 
| 270 | 
            +
                    if not is_batched:
         | 
| 271 | 
            +
                        why_not_fast_path = (
         | 
| 272 | 
            +
                            f"input not batched; expected query.dim() of 3 but got {query.dim()}"
         | 
| 273 | 
            +
                        )
         | 
| 274 | 
            +
                    elif query is not key or key is not value:
         | 
| 275 | 
            +
                        # When lifting this restriction, don't forget to either
         | 
| 276 | 
            +
                        # enforce that the dtypes all match or test cases where
         | 
| 277 | 
            +
                        # they don't!
         | 
| 278 | 
            +
                        why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
         | 
| 279 | 
            +
                    elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
         | 
| 280 | 
            +
                        why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
         | 
| 281 | 
            +
                    elif (
         | 
| 282 | 
            +
                        self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
         | 
| 283 | 
            +
                    ):
         | 
| 284 | 
            +
                        # this case will fail anyway, but at least they'll get a useful error message.
         | 
| 285 | 
            +
                        why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
         | 
| 286 | 
            +
                    elif self.training:
         | 
| 287 | 
            +
                        why_not_fast_path = "training is enabled"
         | 
| 288 | 
            +
                    elif not self.batch_first:
         | 
| 289 | 
            +
                        why_not_fast_path = "batch_first was not True"
         | 
| 290 | 
            +
                    elif self.bias_k is not None:
         | 
| 291 | 
            +
                        why_not_fast_path = "self.bias_k was not None"
         | 
| 292 | 
            +
                    elif self.bias_v is not None:
         | 
| 293 | 
            +
                        why_not_fast_path = "self.bias_v was not None"
         | 
| 294 | 
            +
                    elif self.dropout:
         | 
| 295 | 
            +
                        why_not_fast_path = f"dropout was {self.dropout}, required zero"
         | 
| 296 | 
            +
                    elif self.add_zero_attn:
         | 
| 297 | 
            +
                        why_not_fast_path = "add_zero_attn was enabled"
         | 
| 298 | 
            +
                    elif not self._qkv_same_embed_dim:
         | 
| 299 | 
            +
                        why_not_fast_path = "_qkv_same_embed_dim was not True"
         | 
| 300 | 
            +
                    elif attn_mask is not None:
         | 
| 301 | 
            +
                        why_not_fast_path = "attn_mask was not None"
         | 
| 302 | 
            +
                    elif query.is_nested and key_padding_mask is not None:
         | 
| 303 | 
            +
                        why_not_fast_path = (
         | 
| 304 | 
            +
                            "key_padding_mask is not supported with NestedTensor input"
         | 
| 305 | 
            +
                        )
         | 
| 306 | 
            +
                    elif self.num_heads % 2 == 1:
         | 
| 307 | 
            +
                        why_not_fast_path = "num_heads is odd"
         | 
| 308 | 
            +
                    elif torch.is_autocast_enabled():
         | 
| 309 | 
            +
                        why_not_fast_path = "autocast is enabled"
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    if not why_not_fast_path:
         | 
| 312 | 
            +
                        tensor_args = (
         | 
| 313 | 
            +
                            query,
         | 
| 314 | 
            +
                            key,
         | 
| 315 | 
            +
                            value,
         | 
| 316 | 
            +
                            self.in_proj_weight,
         | 
| 317 | 
            +
                            self.in_proj_bias,
         | 
| 318 | 
            +
                            self.out_proj.weight,
         | 
| 319 | 
            +
                            self.out_proj.bias,
         | 
| 320 | 
            +
                        )
         | 
| 321 | 
            +
                        # We have to use list comprehensions below because TorchScript does not support
         | 
| 322 | 
            +
                        # generator expressions.
         | 
| 323 | 
            +
                        if torch.overrides.has_torch_function(tensor_args):
         | 
| 324 | 
            +
                            why_not_fast_path = "some Tensor argument has_torch_function"
         | 
| 325 | 
            +
                        elif not all(
         | 
| 326 | 
            +
                            [
         | 
| 327 | 
            +
                                (x is None or x.is_cuda or "cpu" in str(x.device))
         | 
| 328 | 
            +
                                for x in tensor_args
         | 
| 329 | 
            +
                            ]
         | 
| 330 | 
            +
                        ):
         | 
| 331 | 
            +
                            why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
         | 
| 332 | 
            +
                        elif torch.is_grad_enabled() and any(
         | 
| 333 | 
            +
                            [x is not None and x.requires_grad for x in tensor_args]
         | 
| 334 | 
            +
                        ):
         | 
| 335 | 
            +
                            why_not_fast_path = (
         | 
| 336 | 
            +
                                "grad is enabled and at least one of query or the "
         | 
| 337 | 
            +
                                "input/output projection weights or biases requires_grad"
         | 
| 338 | 
            +
                            )
         | 
| 339 | 
            +
                        if not why_not_fast_path:
         | 
| 340 | 
            +
                            return torch._native_multi_head_attention(
         | 
| 341 | 
            +
                                query,
         | 
| 342 | 
            +
                                key,
         | 
| 343 | 
            +
                                value,
         | 
| 344 | 
            +
                                self.embed_dim,
         | 
| 345 | 
            +
                                self.num_heads,
         | 
| 346 | 
            +
                                self.in_proj_weight,
         | 
| 347 | 
            +
                                self.in_proj_bias,
         | 
| 348 | 
            +
                                self.out_proj.weight,
         | 
| 349 | 
            +
                                self.out_proj.bias,
         | 
| 350 | 
            +
                                key_padding_mask if key_padding_mask is not None else attn_mask,
         | 
| 351 | 
            +
                                need_weights,
         | 
| 352 | 
            +
                                average_attn_weights,
         | 
| 353 | 
            +
                                1
         | 
| 354 | 
            +
                                if key_padding_mask is not None
         | 
| 355 | 
            +
                                else 0
         | 
| 356 | 
            +
                                if attn_mask is not None
         | 
| 357 | 
            +
                                else None,
         | 
| 358 | 
            +
                            )
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    any_nested = query.is_nested or key.is_nested or value.is_nested
         | 
| 361 | 
            +
                    assert not any_nested, (
         | 
| 362 | 
            +
                        "MultiheadAttention does not support NestedTensor outside of its fast path. "
         | 
| 363 | 
            +
                        + f"The fast path was not hit because {why_not_fast_path}"
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    if self.batch_first and is_batched:
         | 
| 367 | 
            +
                        # make sure that the transpose op does not affect the "is" property
         | 
| 368 | 
            +
                        if key is value:
         | 
| 369 | 
            +
                            if query is key:
         | 
| 370 | 
            +
                                query = key = value = query.transpose(1, 0)
         | 
| 371 | 
            +
                            else:
         | 
| 372 | 
            +
                                query, key = [x.transpose(1, 0) for x in (query, key)]
         | 
| 373 | 
            +
                                value = key
         | 
| 374 | 
            +
                        else:
         | 
| 375 | 
            +
                            query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    if not self._qkv_same_embed_dim:
         | 
| 378 | 
            +
                        attn_output, attn_output_weights = F.multi_head_attention_forward(
         | 
| 379 | 
            +
                            query,
         | 
| 380 | 
            +
                            key,
         | 
| 381 | 
            +
                            value,
         | 
| 382 | 
            +
                            self.embed_dim,
         | 
| 383 | 
            +
                            self.num_heads,
         | 
| 384 | 
            +
                            self.in_proj_weight,
         | 
| 385 | 
            +
                            self.in_proj_bias,
         | 
| 386 | 
            +
                            self.bias_k,
         | 
| 387 | 
            +
                            self.bias_v,
         | 
| 388 | 
            +
                            self.add_zero_attn,
         | 
| 389 | 
            +
                            self.dropout,
         | 
| 390 | 
            +
                            self.out_proj.weight,
         | 
| 391 | 
            +
                            self.out_proj.bias,
         | 
| 392 | 
            +
                            training=self.training,
         | 
| 393 | 
            +
                            key_padding_mask=key_padding_mask,
         | 
| 394 | 
            +
                            need_weights=need_weights,
         | 
| 395 | 
            +
                            attn_mask=attn_mask,
         | 
| 396 | 
            +
                            use_separate_proj_weight=True,
         | 
| 397 | 
            +
                            q_proj_weight=self.q_proj_weight,
         | 
| 398 | 
            +
                            k_proj_weight=self.k_proj_weight,
         | 
| 399 | 
            +
                            v_proj_weight=self.v_proj_weight,
         | 
| 400 | 
            +
                            average_attn_weights=average_attn_weights,
         | 
| 401 | 
            +
                            cache=cache,
         | 
| 402 | 
            +
                        )
         | 
| 403 | 
            +
                    else:
         | 
| 404 | 
            +
                        attn_output, attn_output_weights = F.multi_head_attention_forward(
         | 
| 405 | 
            +
                            query,
         | 
| 406 | 
            +
                            key,
         | 
| 407 | 
            +
                            value,
         | 
| 408 | 
            +
                            self.embed_dim,
         | 
| 409 | 
            +
                            self.num_heads,
         | 
| 410 | 
            +
                            self.in_proj_weight,
         | 
| 411 | 
            +
                            self.in_proj_bias,
         | 
| 412 | 
            +
                            self.bias_k,
         | 
| 413 | 
            +
                            self.bias_v,
         | 
| 414 | 
            +
                            self.add_zero_attn,
         | 
| 415 | 
            +
                            self.dropout,
         | 
| 416 | 
            +
                            self.out_proj.weight,
         | 
| 417 | 
            +
                            self.out_proj.bias,
         | 
| 418 | 
            +
                            training=self.training,
         | 
| 419 | 
            +
                            key_padding_mask=key_padding_mask,
         | 
| 420 | 
            +
                            need_weights=need_weights,
         | 
| 421 | 
            +
                            attn_mask=attn_mask,
         | 
| 422 | 
            +
                            average_attn_weights=average_attn_weights,
         | 
| 423 | 
            +
                            cache=cache,
         | 
| 424 | 
            +
                        )
         | 
| 425 | 
            +
                    if self.batch_first and is_batched:
         | 
| 426 | 
            +
                        return attn_output.transpose(1, 0), attn_output_weights
         | 
| 427 | 
            +
                    else:
         | 
| 428 | 
            +
                        return attn_output, attn_output_weights
         | 
    	
        AR/modules/activation_onnx.py
    ADDED
    
    | @@ -0,0 +1,178 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
         | 
| 2 | 
            +
            from typing import Optional
         | 
| 3 | 
            +
            from typing import Tuple
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from torch import Tensor
         | 
| 6 | 
            +
            from torch.nn import Linear
         | 
| 7 | 
            +
            from torch.nn import Module
         | 
| 8 | 
            +
            from torch.nn.init import constant_
         | 
| 9 | 
            +
            from torch.nn.init import xavier_normal_
         | 
| 10 | 
            +
            from torch.nn.init import xavier_uniform_
         | 
| 11 | 
            +
            from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
         | 
| 12 | 
            +
            from torch.nn.parameter import Parameter
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from torch.nn import functional as F
         | 
| 15 | 
            +
            from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            class MultiheadAttention(Module):
         | 
| 19 | 
            +
                __constants__ = ["batch_first"]
         | 
| 20 | 
            +
                bias_k: Optional[torch.Tensor]
         | 
| 21 | 
            +
                bias_v: Optional[torch.Tensor]
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                def __init__(
         | 
| 24 | 
            +
                    self,
         | 
| 25 | 
            +
                    embed_dim,
         | 
| 26 | 
            +
                    num_heads,
         | 
| 27 | 
            +
                    dropout=0.0,
         | 
| 28 | 
            +
                    bias=True,
         | 
| 29 | 
            +
                    add_bias_kv=False,
         | 
| 30 | 
            +
                    add_zero_attn=False,
         | 
| 31 | 
            +
                    kdim=None,
         | 
| 32 | 
            +
                    vdim=None,
         | 
| 33 | 
            +
                    batch_first=False,
         | 
| 34 | 
            +
                    linear1_cls=Linear,
         | 
| 35 | 
            +
                    linear2_cls=Linear,
         | 
| 36 | 
            +
                    device=None,
         | 
| 37 | 
            +
                    dtype=None,
         | 
| 38 | 
            +
                ) -> None:
         | 
| 39 | 
            +
                    factory_kwargs = {"device": device, "dtype": dtype}
         | 
| 40 | 
            +
                    super(MultiheadAttention, self).__init__()
         | 
| 41 | 
            +
                    self.embed_dim = embed_dim
         | 
| 42 | 
            +
                    self.kdim = kdim if kdim is not None else embed_dim
         | 
| 43 | 
            +
                    self.vdim = vdim if vdim is not None else embed_dim
         | 
| 44 | 
            +
                    self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    self.num_heads = num_heads
         | 
| 47 | 
            +
                    self.dropout = dropout
         | 
| 48 | 
            +
                    self.batch_first = batch_first
         | 
| 49 | 
            +
                    self.head_dim = embed_dim // num_heads
         | 
| 50 | 
            +
                    assert (
         | 
| 51 | 
            +
                        self.head_dim * num_heads == self.embed_dim
         | 
| 52 | 
            +
                    ), "embed_dim must be divisible by num_heads"
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    if add_bias_kv:
         | 
| 55 | 
            +
                        self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
         | 
| 56 | 
            +
                        self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
         | 
| 57 | 
            +
                    else:
         | 
| 58 | 
            +
                        self.bias_k = self.bias_v = None
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    if linear1_cls == Linear:
         | 
| 61 | 
            +
                        if not self._qkv_same_embed_dim:
         | 
| 62 | 
            +
                            self.q_proj_weight = Parameter(
         | 
| 63 | 
            +
                                torch.empty((embed_dim, embed_dim), **factory_kwargs)
         | 
| 64 | 
            +
                            )
         | 
| 65 | 
            +
                            self.k_proj_weight = Parameter(
         | 
| 66 | 
            +
                                torch.empty((embed_dim, self.kdim), **factory_kwargs)
         | 
| 67 | 
            +
                            )
         | 
| 68 | 
            +
                            self.v_proj_weight = Parameter(
         | 
| 69 | 
            +
                                torch.empty((embed_dim, self.vdim), **factory_kwargs)
         | 
| 70 | 
            +
                            )
         | 
| 71 | 
            +
                            self.register_parameter("in_proj_weight", None)
         | 
| 72 | 
            +
                        else:
         | 
| 73 | 
            +
                            self.in_proj_weight = Parameter(
         | 
| 74 | 
            +
                                torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
         | 
| 75 | 
            +
                            )
         | 
| 76 | 
            +
                            self.register_parameter("q_proj_weight", None)
         | 
| 77 | 
            +
                            self.register_parameter("k_proj_weight", None)
         | 
| 78 | 
            +
                            self.register_parameter("v_proj_weight", None)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                        if bias:
         | 
| 81 | 
            +
                            self.in_proj_bias = Parameter(
         | 
| 82 | 
            +
                                torch.empty(3 * embed_dim, **factory_kwargs)
         | 
| 83 | 
            +
                            )
         | 
| 84 | 
            +
                        else:
         | 
| 85 | 
            +
                            self.register_parameter("in_proj_bias", None)
         | 
| 86 | 
            +
                        self.out_proj = NonDynamicallyQuantizableLinear(
         | 
| 87 | 
            +
                            embed_dim, embed_dim, bias=bias, **factory_kwargs
         | 
| 88 | 
            +
                        )
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                        self._reset_parameters()
         | 
| 91 | 
            +
                    else:
         | 
| 92 | 
            +
                        if not self._qkv_same_embed_dim:
         | 
| 93 | 
            +
                            raise NotImplementedError
         | 
| 94 | 
            +
                        else:
         | 
| 95 | 
            +
                            self.in_proj_linear = linear1_cls(
         | 
| 96 | 
            +
                                embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
         | 
| 97 | 
            +
                            )
         | 
| 98 | 
            +
                            self.in_proj_weight = self.in_proj_linear.weight
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                            self.register_parameter("q_proj_weight", None)
         | 
| 101 | 
            +
                            self.register_parameter("k_proj_weight", None)
         | 
| 102 | 
            +
                            self.register_parameter("v_proj_weight", None)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                            if bias:
         | 
| 105 | 
            +
                                self.in_proj_bias = self.in_proj_linear.bias
         | 
| 106 | 
            +
                            else:
         | 
| 107 | 
            +
                                self.register_parameter("in_proj_bias", None)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                        self.out_proj = linear2_cls(
         | 
| 110 | 
            +
                            embed_dim, embed_dim, bias=bias, **factory_kwargs
         | 
| 111 | 
            +
                        )
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                        if self.bias_k is not None:
         | 
| 114 | 
            +
                            xavier_normal_(self.bias_k)
         | 
| 115 | 
            +
                        if self.bias_v is not None:
         | 
| 116 | 
            +
                            xavier_normal_(self.bias_v)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    self.add_zero_attn = add_zero_attn
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def _reset_parameters(self):
         | 
| 121 | 
            +
                    if self._qkv_same_embed_dim:
         | 
| 122 | 
            +
                        xavier_uniform_(self.in_proj_weight)
         | 
| 123 | 
            +
                    else:
         | 
| 124 | 
            +
                        xavier_uniform_(self.q_proj_weight)
         | 
| 125 | 
            +
                        xavier_uniform_(self.k_proj_weight)
         | 
| 126 | 
            +
                        xavier_uniform_(self.v_proj_weight)
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    if self.in_proj_bias is not None:
         | 
| 129 | 
            +
                        constant_(self.in_proj_bias, 0.0)
         | 
| 130 | 
            +
                        constant_(self.out_proj.bias, 0.0)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    if self.bias_k is not None:
         | 
| 133 | 
            +
                        xavier_normal_(self.bias_k)
         | 
| 134 | 
            +
                    if self.bias_v is not None:
         | 
| 135 | 
            +
                        xavier_normal_(self.bias_v)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                def __setstate__(self, state):
         | 
| 138 | 
            +
                    # Support loading old MultiheadAttention checkpoints generated by v1.1.0
         | 
| 139 | 
            +
                    if "_qkv_same_embed_dim" not in state:
         | 
| 140 | 
            +
                        state["_qkv_same_embed_dim"] = True
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    super(MultiheadAttention, self).__setstate__(state)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                def forward(
         | 
| 145 | 
            +
                    self,
         | 
| 146 | 
            +
                    query: Tensor,
         | 
| 147 | 
            +
                    key: Tensor,
         | 
| 148 | 
            +
                    value: Tensor,
         | 
| 149 | 
            +
                    key_padding_mask: Optional[Tensor] = None,
         | 
| 150 | 
            +
                    need_weights: bool = True,
         | 
| 151 | 
            +
                    attn_mask: Optional[Tensor] = None,
         | 
| 152 | 
            +
                    average_attn_weights: bool = True,
         | 
| 153 | 
            +
                    cache=None,
         | 
| 154 | 
            +
                ) -> Tuple[Tensor, Optional[Tensor]]:
         | 
| 155 | 
            +
                    any_nested = query.is_nested or key.is_nested or value.is_nested
         | 
| 156 | 
            +
                    query = key = value = query.transpose(1, 0)
         | 
| 157 | 
            +
                    attn_output = multi_head_attention_forward_patched(
         | 
| 158 | 
            +
                        query,
         | 
| 159 | 
            +
                        key,
         | 
| 160 | 
            +
                        value,
         | 
| 161 | 
            +
                        self.embed_dim,
         | 
| 162 | 
            +
                        self.num_heads,
         | 
| 163 | 
            +
                        self.in_proj_weight,
         | 
| 164 | 
            +
                        self.in_proj_bias,
         | 
| 165 | 
            +
                        self.bias_k,
         | 
| 166 | 
            +
                        self.bias_v,
         | 
| 167 | 
            +
                        self.add_zero_attn,
         | 
| 168 | 
            +
                        self.dropout,
         | 
| 169 | 
            +
                        self.out_proj.weight,
         | 
| 170 | 
            +
                        self.out_proj.bias,
         | 
| 171 | 
            +
                        training=self.training,
         | 
| 172 | 
            +
                        key_padding_mask=key_padding_mask,
         | 
| 173 | 
            +
                        need_weights=need_weights,
         | 
| 174 | 
            +
                        attn_mask=attn_mask,
         | 
| 175 | 
            +
                        average_attn_weights=average_attn_weights,
         | 
| 176 | 
            +
                        cache=cache,
         | 
| 177 | 
            +
                    )
         | 
| 178 | 
            +
                    return attn_output.transpose(1, 0)
         | 
    	
        AR/modules/embedding.py
    ADDED
    
    | @@ -0,0 +1,81 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from torch import nn
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            class TokenEmbedding(nn.Module):
         | 
| 9 | 
            +
                def __init__(
         | 
| 10 | 
            +
                    self,
         | 
| 11 | 
            +
                    embedding_dim: int,
         | 
| 12 | 
            +
                    vocab_size: int,
         | 
| 13 | 
            +
                    dropout: float = 0.0,
         | 
| 14 | 
            +
                ):
         | 
| 15 | 
            +
                    super().__init__()
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                    self.vocab_size = vocab_size
         | 
| 18 | 
            +
                    self.embedding_dim = embedding_dim
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                    self.dropout = torch.nn.Dropout(p=dropout)
         | 
| 21 | 
            +
                    self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                @property
         | 
| 24 | 
            +
                def weight(self) -> torch.Tensor:
         | 
| 25 | 
            +
                    return self.word_embeddings.weight
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def embedding(self, index: int) -> torch.Tensor:
         | 
| 28 | 
            +
                    return self.word_embeddings.weight[index : index + 1]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 31 | 
            +
                    x = self.word_embeddings(x)
         | 
| 32 | 
            +
                    x = self.dropout(x)
         | 
| 33 | 
            +
                    return x
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            class SinePositionalEmbedding(nn.Module):
         | 
| 37 | 
            +
                def __init__(
         | 
| 38 | 
            +
                    self,
         | 
| 39 | 
            +
                    embedding_dim: int,
         | 
| 40 | 
            +
                    dropout: float = 0.0,
         | 
| 41 | 
            +
                    scale: bool = False,
         | 
| 42 | 
            +
                    alpha: bool = False,
         | 
| 43 | 
            +
                ):
         | 
| 44 | 
            +
                    super().__init__()
         | 
| 45 | 
            +
                    self.embedding_dim = embedding_dim
         | 
| 46 | 
            +
                    self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
         | 
| 47 | 
            +
                    self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
         | 
| 48 | 
            +
                    self.dropout = torch.nn.Dropout(p=dropout)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    self.reverse = False
         | 
| 51 | 
            +
                    self.pe = None
         | 
| 52 | 
            +
                    self.extend_pe(torch.tensor(0.0).expand(1, 4000))
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def extend_pe(self, x):
         | 
| 55 | 
            +
                    """Reset the positional encodings."""
         | 
| 56 | 
            +
                    if self.pe is not None:
         | 
| 57 | 
            +
                        if self.pe.size(1) >= x.size(1):
         | 
| 58 | 
            +
                            if self.pe.dtype != x.dtype or self.pe.device != x.device:
         | 
| 59 | 
            +
                                self.pe = self.pe.to(dtype=x.dtype, device=x.device)
         | 
| 60 | 
            +
                            return
         | 
| 61 | 
            +
                    pe = torch.zeros(x.size(1), self.embedding_dim)
         | 
| 62 | 
            +
                    if self.reverse:
         | 
| 63 | 
            +
                        position = torch.arange(
         | 
| 64 | 
            +
                            x.size(1) - 1, -1, -1.0, dtype=torch.float32
         | 
| 65 | 
            +
                        ).unsqueeze(1)
         | 
| 66 | 
            +
                    else:
         | 
| 67 | 
            +
                        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
         | 
| 68 | 
            +
                    div_term = torch.exp(
         | 
| 69 | 
            +
                        torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
         | 
| 70 | 
            +
                        * -(math.log(10000.0) / self.embedding_dim)
         | 
| 71 | 
            +
                    )
         | 
| 72 | 
            +
                    pe[:, 0::2] = torch.sin(position * div_term)
         | 
| 73 | 
            +
                    pe[:, 1::2] = torch.cos(position * div_term)
         | 
| 74 | 
            +
                    pe = pe.unsqueeze(0)
         | 
| 75 | 
            +
                    self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 78 | 
            +
                    self.extend_pe(x)
         | 
| 79 | 
            +
                    output = x.unsqueeze(-1) if x.ndim == 2 else x
         | 
| 80 | 
            +
                    output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
         | 
| 81 | 
            +
                    return self.dropout(output)
         | 
    	
        AR/modules/embedding_onnx.py
    ADDED
    
    | @@ -0,0 +1,63 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from torch import nn
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            class TokenEmbedding(nn.Module):
         | 
| 9 | 
            +
                def __init__(
         | 
| 10 | 
            +
                    self,
         | 
| 11 | 
            +
                    embedding_dim: int,
         | 
| 12 | 
            +
                    vocab_size: int,
         | 
| 13 | 
            +
                    dropout: float = 0.0,
         | 
| 14 | 
            +
                ):
         | 
| 15 | 
            +
                    super().__init__()
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                    self.vocab_size = vocab_size
         | 
| 18 | 
            +
                    self.embedding_dim = embedding_dim
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                    self.dropout = torch.nn.Dropout(p=dropout)
         | 
| 21 | 
            +
                    self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                @property
         | 
| 24 | 
            +
                def weight(self) -> torch.Tensor:
         | 
| 25 | 
            +
                    return self.word_embeddings.weight
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def embedding(self, index: int) -> torch.Tensor:
         | 
| 28 | 
            +
                    return self.word_embeddings.weight[index : index + 1]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 31 | 
            +
                    x = self.word_embeddings(x)
         | 
| 32 | 
            +
                    x = self.dropout(x)
         | 
| 33 | 
            +
                    return x
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            class SinePositionalEmbedding(nn.Module):
         | 
| 37 | 
            +
                def __init__(
         | 
| 38 | 
            +
                    self,
         | 
| 39 | 
            +
                    embedding_dim: int,
         | 
| 40 | 
            +
                    dropout: float = 0.0,
         | 
| 41 | 
            +
                    scale: bool = False,
         | 
| 42 | 
            +
                    alpha: bool = False,
         | 
| 43 | 
            +
                ):
         | 
| 44 | 
            +
                    super().__init__()
         | 
| 45 | 
            +
                    self.embedding_dim = embedding_dim
         | 
| 46 | 
            +
                    self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
         | 
| 47 | 
            +
                    self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
         | 
| 48 | 
            +
                    self.dropout = torch.nn.Dropout(p=dropout)
         | 
| 49 | 
            +
                    self.reverse = False
         | 
| 50 | 
            +
                    self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def extend_pe(self, x):
         | 
| 53 | 
            +
                    position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
         | 
| 54 | 
            +
                    scpe = (position * self.div_term).unsqueeze(0)
         | 
| 55 | 
            +
                    pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
         | 
| 56 | 
            +
                    pe = pe.contiguous().view(1, -1, self.embedding_dim)
         | 
| 57 | 
            +
                    return pe
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 60 | 
            +
                    pe = self.extend_pe(x)
         | 
| 61 | 
            +
                    output = x.unsqueeze(-1) if x.ndim == 2 else x
         | 
| 62 | 
            +
                    output = output * self.x_scale + self.alpha * pe
         | 
| 63 | 
            +
                    return self.dropout(output)
         | 
    	
        AR/modules/lr_schedulers.py
    ADDED
    
    | @@ -0,0 +1,83 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            from matplotlib import pyplot as plt
         | 
| 7 | 
            +
            from torch import nn
         | 
| 8 | 
            +
            from torch.optim import Adam
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
         | 
| 12 | 
            +
                """
         | 
| 13 | 
            +
                Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
         | 
| 14 | 
            +
                """
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                def __init__(
         | 
| 17 | 
            +
                    self,
         | 
| 18 | 
            +
                    optimizer,
         | 
| 19 | 
            +
                    init_lr,
         | 
| 20 | 
            +
                    peak_lr,
         | 
| 21 | 
            +
                    end_lr,
         | 
| 22 | 
            +
                    warmup_steps=10000,
         | 
| 23 | 
            +
                    total_steps=400000,
         | 
| 24 | 
            +
                    current_step=0,
         | 
| 25 | 
            +
                ):
         | 
| 26 | 
            +
                    self.init_lr = init_lr
         | 
| 27 | 
            +
                    self.peak_lr = peak_lr
         | 
| 28 | 
            +
                    self.end_lr = end_lr
         | 
| 29 | 
            +
                    self.optimizer = optimizer
         | 
| 30 | 
            +
                    self._warmup_rate = (peak_lr - init_lr) / warmup_steps
         | 
| 31 | 
            +
                    self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
         | 
| 32 | 
            +
                    self._current_step = current_step
         | 
| 33 | 
            +
                    self.lr = init_lr
         | 
| 34 | 
            +
                    self.warmup_steps = warmup_steps
         | 
| 35 | 
            +
                    self.total_steps = total_steps
         | 
| 36 | 
            +
                    self._last_lr = [self.lr]
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                def set_lr(self, lr):
         | 
| 39 | 
            +
                    self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
         | 
| 40 | 
            +
                    for g in self.optimizer.param_groups:
         | 
| 41 | 
            +
                        # g['lr'] = lr
         | 
| 42 | 
            +
                        g["lr"] = self.end_lr  ###锁定用线性
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                def step(self):
         | 
| 45 | 
            +
                    if self._current_step < self.warmup_steps:
         | 
| 46 | 
            +
                        lr = self.init_lr + self._warmup_rate * self._current_step
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    elif self._current_step > self.total_steps:
         | 
| 49 | 
            +
                        lr = self.end_lr
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        decay_ratio = (self._current_step - self.warmup_steps) / (
         | 
| 53 | 
            +
                            self.total_steps - self.warmup_steps
         | 
| 54 | 
            +
                        )
         | 
| 55 | 
            +
                        if decay_ratio < 0.0 or decay_ratio > 1.0:
         | 
| 56 | 
            +
                            raise RuntimeError(
         | 
| 57 | 
            +
                                "Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
         | 
| 58 | 
            +
                            )
         | 
| 59 | 
            +
                        coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
         | 
| 60 | 
            +
                        lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    self.lr = lr = self.end_lr = 0.002  ###锁定用线性###不听话,直接锁定!
         | 
| 63 | 
            +
                    self.set_lr(lr)
         | 
| 64 | 
            +
                    self.lr = lr
         | 
| 65 | 
            +
                    self._current_step += 1
         | 
| 66 | 
            +
                    return self.lr
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            if __name__ == "__main__":
         | 
| 70 | 
            +
                m = nn.Linear(10, 10)
         | 
| 71 | 
            +
                opt = Adam(m.parameters(), lr=1e-4)
         | 
| 72 | 
            +
                s = WarmupCosineLRSchedule(
         | 
| 73 | 
            +
                    opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
         | 
| 74 | 
            +
                )
         | 
| 75 | 
            +
                lrs = []
         | 
| 76 | 
            +
                for i in range(25000):
         | 
| 77 | 
            +
                    s.step()
         | 
| 78 | 
            +
                    lrs.append(s.lr)
         | 
| 79 | 
            +
                    print(s.lr)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                plt.plot(lrs)
         | 
| 82 | 
            +
                plt.plot(range(0, 25000), lrs)
         | 
| 83 | 
            +
                plt.show()
         | 
    	
        AR/modules/optim.py
    ADDED
    
    | @@ -0,0 +1,622 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright      2022  Xiaomi Corp.        (authors: Daniel Povey)
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # See ../LICENSE for clarification regarding multiple authors
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
            import contextlib
         | 
| 17 | 
            +
            import logging
         | 
| 18 | 
            +
            from collections import defaultdict
         | 
| 19 | 
            +
            from typing import List
         | 
| 20 | 
            +
            from typing import Tuple
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            from torch import Tensor
         | 
| 24 | 
            +
            from torch.optim import Optimizer
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class BatchedOptimizer(Optimizer):
         | 
| 28 | 
            +
                """
         | 
| 29 | 
            +
                This class adds to class Optimizer the capability to optimize parameters in batches:
         | 
| 30 | 
            +
                it will stack the parameters and their grads for you so the optimizer can work
         | 
| 31 | 
            +
                on tensors with an extra leading dimension.  This is intended for speed with GPUs,
         | 
| 32 | 
            +
                as it reduces the number of kernels launched in the optimizer.
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                Args:
         | 
| 35 | 
            +
                  params:
         | 
| 36 | 
            +
                """
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                def __init__(self, params, defaults):
         | 
| 39 | 
            +
                    super(BatchedOptimizer, self).__init__(params, defaults)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                @contextlib.contextmanager
         | 
| 42 | 
            +
                def batched_params(self, param_group, group_params_names):
         | 
| 43 | 
            +
                    """
         | 
| 44 | 
            +
                    This function returns (technically, yields) a list of
         | 
| 45 | 
            +
                      of tuples (p, state), where
         | 
| 46 | 
            +
                    p is a `fake` parameter that is stacked (over axis 0) from real parameters
         | 
| 47 | 
            +
                    that share the same shape, and its gradient is also stacked;
         | 
| 48 | 
            +
                    `state` is the state corresponding to this batch of parameters
         | 
| 49 | 
            +
                    (it will be physically located in the "state" for one of the real
         | 
| 50 | 
            +
                    parameters, the last one that has any particular shape and dtype).
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    This function is decorated as a context manager so that it can
         | 
| 53 | 
            +
                    write parameters back to their "real" locations.
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    The idea is, instead of doing:
         | 
| 56 | 
            +
                    <code>
         | 
| 57 | 
            +
                      for p in group["params"]:
         | 
| 58 | 
            +
                         state = self.state[p]
         | 
| 59 | 
            +
                         ...
         | 
| 60 | 
            +
                    </code>
         | 
| 61 | 
            +
                    you can do:
         | 
| 62 | 
            +
                    <code>
         | 
| 63 | 
            +
                      with self.batched_params(group["params"]) as batches:
         | 
| 64 | 
            +
                         for p, state, p_names in batches:
         | 
| 65 | 
            +
                             ...
         | 
| 66 | 
            +
                    </code>
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    Args:
         | 
| 69 | 
            +
                      group: a parameter group, which is a list of parameters; should be
         | 
| 70 | 
            +
                            one of self.param_groups.
         | 
| 71 | 
            +
                      group_params_names: name for each parameter in group,
         | 
| 72 | 
            +
                            which is List[str].
         | 
| 73 | 
            +
                    """
         | 
| 74 | 
            +
                    batches = defaultdict(
         | 
| 75 | 
            +
                        list
         | 
| 76 | 
            +
                    )  # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
         | 
| 77 | 
            +
                    batches_names = defaultdict(
         | 
| 78 | 
            +
                        list
         | 
| 79 | 
            +
                    )  # `batches` maps from tuple (dtype_as_str,*shape) to list of str
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                    assert len(param_group) == len(group_params_names)
         | 
| 82 | 
            +
                    for p, named_p in zip(param_group, group_params_names):
         | 
| 83 | 
            +
                        key = (str(p.dtype), *p.shape)
         | 
| 84 | 
            +
                        batches[key].append(p)
         | 
| 85 | 
            +
                        batches_names[key].append(named_p)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    batches_names_keys = list(batches_names.keys())
         | 
| 88 | 
            +
                    sorted_idx = sorted(
         | 
| 89 | 
            +
                        range(len(batches_names)), key=lambda i: batches_names_keys[i])
         | 
| 90 | 
            +
                    batches_names = [
         | 
| 91 | 
            +
                        batches_names[batches_names_keys[idx]] for idx in sorted_idx
         | 
| 92 | 
            +
                    ]
         | 
| 93 | 
            +
                    batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    stacked_params_dict = dict()
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    # turn batches into a list, in deterministic order.
         | 
| 98 | 
            +
                    # tuples will contain tuples of (stacked_param, state, stacked_params_names),
         | 
| 99 | 
            +
                    # one for each batch in `batches`.
         | 
| 100 | 
            +
                    tuples = []
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    for batch, batch_names in zip(batches, batches_names):
         | 
| 103 | 
            +
                        p = batch[0]
         | 
| 104 | 
            +
                        # we arbitrarily store the state in the
         | 
| 105 | 
            +
                        # state corresponding to the 1st parameter in the
         | 
| 106 | 
            +
                        # group.  class Optimizer will take care of saving/loading state.
         | 
| 107 | 
            +
                        state = self.state[p]
         | 
| 108 | 
            +
                        p_stacked = torch.stack(batch)
         | 
| 109 | 
            +
                        grad = torch.stack([
         | 
| 110 | 
            +
                            torch.zeros_like(p) if p.grad is None else p.grad for p in batch
         | 
| 111 | 
            +
                        ])
         | 
| 112 | 
            +
                        p_stacked.grad = grad
         | 
| 113 | 
            +
                        stacked_params_dict[key] = p_stacked
         | 
| 114 | 
            +
                        tuples.append((p_stacked, state, batch_names))
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    yield tuples  # <-- calling code will do the actual optimization here!
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
         | 
| 119 | 
            +
                        for i, p in enumerate(batch):  # batch is list of Parameter
         | 
| 120 | 
            +
                            p.copy_(stacked_params[i])
         | 
| 121 | 
            +
             | 
| 122 | 
            +
             | 
| 123 | 
            +
            class ScaledAdam(BatchedOptimizer):
         | 
| 124 | 
            +
                """
         | 
| 125 | 
            +
                 Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
         | 
| 126 | 
            +
                 proportional to the norm of that parameter; and also learn the scale of the parameter,
         | 
| 127 | 
            +
                 in log space, subject to upper and lower limits (as if we had factored each parameter as
         | 
| 128 | 
            +
                 param = underlying_param * log_scale.exp())
         | 
| 129 | 
            +
             | 
| 130 | 
            +
             | 
| 131 | 
            +
                 Args:
         | 
| 132 | 
            +
                      params:  The parameters or param_groups to optimize (like other Optimizer subclasses)
         | 
| 133 | 
            +
                          lr:  The learning rate.  We will typically use a learning rate schedule that starts
         | 
| 134 | 
            +
                               at 0.03 and decreases over time, i.e. much higher than other common
         | 
| 135 | 
            +
                               optimizers.
         | 
| 136 | 
            +
                 clipping_scale: (e.g. 2.0)
         | 
| 137 | 
            +
                               A scale for gradient-clipping: if specified, the normalized gradients
         | 
| 138 | 
            +
                               over the whole model will be clipped to have 2-norm equal to
         | 
| 139 | 
            +
                               `clipping_scale` times the median 2-norm over the most recent period
         | 
| 140 | 
            +
                               of `clipping_update_period` minibatches.  By "normalized gradients",
         | 
| 141 | 
            +
                               we mean after multiplying by the rms parameter value for this tensor
         | 
| 142 | 
            +
                               [for non-scalars]; this is appropriate because our update is scaled
         | 
| 143 | 
            +
                               by this quantity.
         | 
| 144 | 
            +
                        betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
         | 
| 145 | 
            +
                               Must satisfy 0 < beta <= beta2 < 1.
         | 
| 146 | 
            +
                 scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
         | 
| 147 | 
            +
                               scale of each parameter tensor and scalar parameters of the mode..
         | 
| 148 | 
            +
                               If each parameter were decomposed
         | 
| 149 | 
            +
                               as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
         | 
| 150 | 
            +
                               would be a the scaling factor on the learning rate of p_scale.
         | 
| 151 | 
            +
                          eps:  A general-purpose epsilon to prevent division by zero
         | 
| 152 | 
            +
                param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
         | 
| 153 | 
            +
                               learning the scale on the parameters (we'll constrain the rms of each non-scalar
         | 
| 154 | 
            +
                               parameter tensor to be >= this value)
         | 
| 155 | 
            +
                param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
         | 
| 156 | 
            +
                               learning the scale on the parameters (we'll constrain the rms of each non-scalar
         | 
| 157 | 
            +
                               parameter tensor to be <= this value)
         | 
| 158 | 
            +
                   scalar_max: Maximum absolute value for scalar parameters (applicable if your
         | 
| 159 | 
            +
                               model has any parameters with numel() == 1).
         | 
| 160 | 
            +
                size_update_period: The periodicity, in steps, with which we update the size (scale)
         | 
| 161 | 
            +
                               of the parameter tensor.  This is provided to save a little time
         | 
| 162 | 
            +
                               in the update.
         | 
| 163 | 
            +
                 clipping_update_period: if clipping_scale is specified, this is the period
         | 
| 164 | 
            +
                """
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def __init__(
         | 
| 167 | 
            +
                        self,
         | 
| 168 | 
            +
                        params,
         | 
| 169 | 
            +
                        lr=3e-02,
         | 
| 170 | 
            +
                        clipping_scale=None,
         | 
| 171 | 
            +
                        betas=(0.9, 0.98),
         | 
| 172 | 
            +
                        scalar_lr_scale=0.1,
         | 
| 173 | 
            +
                        eps=1.0e-08,
         | 
| 174 | 
            +
                        param_min_rms=1.0e-05,
         | 
| 175 | 
            +
                        param_max_rms=3.0,
         | 
| 176 | 
            +
                        scalar_max=10.0,
         | 
| 177 | 
            +
                        size_update_period=4,
         | 
| 178 | 
            +
                        clipping_update_period=100,
         | 
| 179 | 
            +
                        parameters_names=None,
         | 
| 180 | 
            +
                        show_dominant_parameters=True, ):
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    assert parameters_names is not None, (
         | 
| 183 | 
            +
                        "Please prepare parameters_names,"
         | 
| 184 | 
            +
                        "which is a List[List[str]]. Each List[str] is for a group"
         | 
| 185 | 
            +
                        "and each str is for a parameter")
         | 
| 186 | 
            +
                    defaults = dict(
         | 
| 187 | 
            +
                        lr=lr,
         | 
| 188 | 
            +
                        clipping_scale=clipping_scale,
         | 
| 189 | 
            +
                        betas=betas,
         | 
| 190 | 
            +
                        scalar_lr_scale=scalar_lr_scale,
         | 
| 191 | 
            +
                        eps=eps,
         | 
| 192 | 
            +
                        param_min_rms=param_min_rms,
         | 
| 193 | 
            +
                        param_max_rms=param_max_rms,
         | 
| 194 | 
            +
                        scalar_max=scalar_max,
         | 
| 195 | 
            +
                        size_update_period=size_update_period,
         | 
| 196 | 
            +
                        clipping_update_period=clipping_update_period, )
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    super(ScaledAdam, self).__init__(params, defaults)
         | 
| 199 | 
            +
                    assert len(self.param_groups) == len(parameters_names)
         | 
| 200 | 
            +
                    self.parameters_names = parameters_names
         | 
| 201 | 
            +
                    self.show_dominant_parameters = show_dominant_parameters
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                def __setstate__(self, state):
         | 
| 204 | 
            +
                    super(ScaledAdam, self).__setstate__(state)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                @torch.no_grad()
         | 
| 207 | 
            +
                def step(self, closure=None):
         | 
| 208 | 
            +
                    """Performs a single optimization step.
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    Arguments:
         | 
| 211 | 
            +
                        closure (callable, optional): A closure that reevaluates the model
         | 
| 212 | 
            +
                            and returns the loss.
         | 
| 213 | 
            +
                    """
         | 
| 214 | 
            +
                    loss = None
         | 
| 215 | 
            +
                    if closure is not None:
         | 
| 216 | 
            +
                        with torch.enable_grad():
         | 
| 217 | 
            +
                            loss = closure()
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    batch = True
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    for group, group_params_names in zip(self.param_groups,
         | 
| 222 | 
            +
                                                         self.parameters_names):
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                        with self.batched_params(group["params"],
         | 
| 225 | 
            +
                                                 group_params_names) as batches:
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                            # batches is list of pairs (stacked_param, state).  stacked_param is like
         | 
| 228 | 
            +
                            # a regular parameter, and will have a .grad, but the 1st dim corresponds to
         | 
| 229 | 
            +
                            # a stacking dim, it is not a real dim.
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                            if (len(batches[0][1]) ==
         | 
| 232 | 
            +
                                    0):  # if len(first state) == 0: not yet initialized
         | 
| 233 | 
            +
                                clipping_scale = 1
         | 
| 234 | 
            +
                            else:
         | 
| 235 | 
            +
                                clipping_scale = self._get_clipping_scale(group, batches)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                            for p, state, _ in batches:
         | 
| 238 | 
            +
                                # Perform optimization step.
         | 
| 239 | 
            +
                                # grad is not going to be None, we handled that when creating the batches.
         | 
| 240 | 
            +
                                grad = p.grad
         | 
| 241 | 
            +
                                if grad.is_sparse:
         | 
| 242 | 
            +
                                    raise RuntimeError(
         | 
| 243 | 
            +
                                        "ScaledAdam optimizer does not support sparse gradients"
         | 
| 244 | 
            +
                                    )
         | 
| 245 | 
            +
                                # State initialization
         | 
| 246 | 
            +
                                if len(state) == 0:
         | 
| 247 | 
            +
                                    self._init_state(group, p, state)
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                                self._step_one_batch(group, p, state, clipping_scale)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    return loss
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                def _init_state(self, group: dict, p: Tensor, state: dict):
         | 
| 254 | 
            +
                    """
         | 
| 255 | 
            +
                    Initializes state dict for parameter 'p'.  Assumes that dim 0 of tensor p
         | 
| 256 | 
            +
                    is actually the batch dimension, corresponding to batched-together
         | 
| 257 | 
            +
                    parameters of a given shape.
         | 
| 258 | 
            +
             | 
| 259 | 
            +
             | 
| 260 | 
            +
                    Args:
         | 
| 261 | 
            +
                       group:   Dict to look up configuration values.
         | 
| 262 | 
            +
                           p: The parameter that we are initializing the state for
         | 
| 263 | 
            +
                       state: Dict from string to whatever state we are initializing
         | 
| 264 | 
            +
                    """
         | 
| 265 | 
            +
                    size_update_period = group["size_update_period"]
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    state["step"] = 0
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    kwargs = {"device": p.device, "dtype": p.dtype}
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    # 'delta' implements conventional momentum.  There are
         | 
| 272 | 
            +
                    # several different kinds of update going on, so rather than
         | 
| 273 | 
            +
                    # compute "exp_avg" like in Adam, we store and decay a
         | 
| 274 | 
            +
                    # parameter-change "delta", which combines all forms of
         | 
| 275 | 
            +
                    # update.  this is equivalent to how it's done in Adam,
         | 
| 276 | 
            +
                    # except for the first few steps.
         | 
| 277 | 
            +
                    state["delta"] = torch.zeros_like(
         | 
| 278 | 
            +
                        p, memory_format=torch.preserve_format)
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    batch_size = p.shape[0]
         | 
| 281 | 
            +
                    numel = p.numel() // batch_size
         | 
| 282 | 
            +
                    numel = p.numel()
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    if numel > 1:
         | 
| 285 | 
            +
                        # "param_rms" just periodically records the scalar root-mean-square value of
         | 
| 286 | 
            +
                        # the parameter tensor.
         | 
| 287 | 
            +
                        # it has a shape like (batch_size, 1, 1, 1, 1)
         | 
| 288 | 
            +
                        param_rms = (
         | 
| 289 | 
            +
                            (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
         | 
| 290 | 
            +
                        state["param_rms"] = param_rms
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                        state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
         | 
| 293 | 
            +
                        state["scale_grads"] = torch.zeros(size_update_period,
         | 
| 294 | 
            +
                                                           *param_rms.shape, **kwargs)
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    # exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
         | 
| 297 | 
            +
                    state["exp_avg_sq"] = torch.zeros_like(
         | 
| 298 | 
            +
                        p, memory_format=torch.preserve_format)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                def _get_clipping_scale(self,
         | 
| 301 | 
            +
                                        group: dict,
         | 
| 302 | 
            +
                                        tuples: List[Tuple[Tensor, dict, List[str]]]
         | 
| 303 | 
            +
                                        ) -> float:
         | 
| 304 | 
            +
                    """
         | 
| 305 | 
            +
                    Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
         | 
| 306 | 
            +
                    by this amount before applying the rest of the update.
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    Args:
         | 
| 309 | 
            +
                       group: the parameter group, an item in self.param_groups
         | 
| 310 | 
            +
                       tuples: a list of tuples of (param, state, param_names)
         | 
| 311 | 
            +
                            where param is a batched set of parameters,
         | 
| 312 | 
            +
                            with a .grad (1st dim is batch dim)
         | 
| 313 | 
            +
                            and state is the state-dict where optimization parameters are kept.
         | 
| 314 | 
            +
                            param_names is a List[str] while each str is name for a parameter
         | 
| 315 | 
            +
                            in batched set of parameters "param".
         | 
| 316 | 
            +
                    """
         | 
| 317 | 
            +
                    assert len(tuples) >= 1
         | 
| 318 | 
            +
                    clipping_scale = group["clipping_scale"]
         | 
| 319 | 
            +
                    (first_p, first_state, _) = tuples[0]
         | 
| 320 | 
            +
                    step = first_state["step"]
         | 
| 321 | 
            +
                    if clipping_scale is None or step == 0:
         | 
| 322 | 
            +
                        # no clipping.  return early on step == 0 because the other
         | 
| 323 | 
            +
                        # parameters' state won't have been initialized yet.
         | 
| 324 | 
            +
                        return 1.0
         | 
| 325 | 
            +
                    clipping_update_period = group["clipping_update_period"]
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    tot_sumsq = torch.tensor(0.0, device=first_p.device)
         | 
| 328 | 
            +
                    for (p, state, param_names) in tuples:
         | 
| 329 | 
            +
                        grad = p.grad
         | 
| 330 | 
            +
                        if grad.is_sparse:
         | 
| 331 | 
            +
                            raise RuntimeError(
         | 
| 332 | 
            +
                                "ScaledAdam optimizer does not support sparse gradients")
         | 
| 333 | 
            +
                        if p.numel() == p.shape[0]:  # a batch of scalars
         | 
| 334 | 
            +
                            tot_sumsq += (grad**2).sum()  # sum() to change shape [1] to []
         | 
| 335 | 
            +
                        else:
         | 
| 336 | 
            +
                            tot_sumsq += ((grad * state["param_rms"])**2).sum()
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    tot_norm = tot_sumsq.sqrt()
         | 
| 339 | 
            +
                    if "model_norms" not in first_state:
         | 
| 340 | 
            +
                        first_state["model_norms"] = torch.zeros(
         | 
| 341 | 
            +
                            clipping_update_period, device=p.device)
         | 
| 342 | 
            +
                    first_state["model_norms"][step % clipping_update_period] = tot_norm
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    if step % clipping_update_period == 0:
         | 
| 345 | 
            +
                        # Print some stats.
         | 
| 346 | 
            +
                        # We don't reach here if step == 0 because we would have returned
         | 
| 347 | 
            +
                        # above.
         | 
| 348 | 
            +
                        sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
         | 
| 349 | 
            +
                        quartiles = []
         | 
| 350 | 
            +
                        for n in range(0, 5):
         | 
| 351 | 
            +
                            index = min(
         | 
| 352 | 
            +
                                clipping_update_period - 1,
         | 
| 353 | 
            +
                                (clipping_update_period // 4) * n, )
         | 
| 354 | 
            +
                            quartiles.append(sorted_norms[index].item())
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                        median = quartiles[2]
         | 
| 357 | 
            +
                        threshold = clipping_scale * median
         | 
| 358 | 
            +
                        first_state["model_norm_threshold"] = threshold
         | 
| 359 | 
            +
                        percent_clipped = (first_state["num_clipped"] * 100.0 /
         | 
| 360 | 
            +
                                           clipping_update_period
         | 
| 361 | 
            +
                                           if "num_clipped" in first_state else 0.0)
         | 
| 362 | 
            +
                        first_state["num_clipped"] = 0
         | 
| 363 | 
            +
                        quartiles = " ".join(["%.3e" % x for x in quartiles])
         | 
| 364 | 
            +
                        logging.info(
         | 
| 365 | 
            +
                            f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
         | 
| 366 | 
            +
                            f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
         | 
| 367 | 
            +
                        )
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    if step < clipping_update_period:
         | 
| 370 | 
            +
                        return 1.0  # We have not yet estimated a norm to clip to.
         | 
| 371 | 
            +
                    else:
         | 
| 372 | 
            +
                        try:
         | 
| 373 | 
            +
                            model_norm_threshold = first_state["model_norm_threshold"]
         | 
| 374 | 
            +
                        except KeyError:
         | 
| 375 | 
            +
                            logging.info(
         | 
| 376 | 
            +
                                "Warning: model_norm_threshold not in state: possibly "
         | 
| 377 | 
            +
                                "you changed config when restarting, adding clipping_scale option?"
         | 
| 378 | 
            +
                            )
         | 
| 379 | 
            +
                            return 1.0
         | 
| 380 | 
            +
                        ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
         | 
| 381 | 
            +
                        if ans < 1.0:
         | 
| 382 | 
            +
                            first_state["num_clipped"] += 1
         | 
| 383 | 
            +
                        if ans < 0.1:
         | 
| 384 | 
            +
                            logging.warn(
         | 
| 385 | 
            +
                                f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
         | 
| 386 | 
            +
                            )
         | 
| 387 | 
            +
                            if self.show_dominant_parameters:
         | 
| 388 | 
            +
                                assert p.shape[0] == len(param_names)
         | 
| 389 | 
            +
                                self._show_gradient_dominating_parameter(tuples, tot_sumsq)
         | 
| 390 | 
            +
                        return ans
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                def _show_gradient_dominating_parameter(
         | 
| 393 | 
            +
                        self, tuples: List[Tuple[Tensor, dict, List[str]]],
         | 
| 394 | 
            +
                        tot_sumsq: Tensor):
         | 
| 395 | 
            +
                    """
         | 
| 396 | 
            +
                    Show information of parameter wihch dominanting tot_sumsq.
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    Args:
         | 
| 399 | 
            +
                       tuples: a list of tuples of (param, state, param_names)
         | 
| 400 | 
            +
                            where param is a batched set of parameters,
         | 
| 401 | 
            +
                            with a .grad (1st dim is batch dim)
         | 
| 402 | 
            +
                            and state is the state-dict where optimization parameters are kept.
         | 
| 403 | 
            +
                            param_names is a List[str] while each str is name for a parameter
         | 
| 404 | 
            +
                            in batched set of parameters "param".
         | 
| 405 | 
            +
                        tot_sumsq: sumsq of all parameters. Though it's could be calculated
         | 
| 406 | 
            +
                            from tuples, we still pass it to save some time.
         | 
| 407 | 
            +
                    """
         | 
| 408 | 
            +
                    all_sumsq_orig = {}
         | 
| 409 | 
            +
                    for (p, state, batch_param_names) in tuples:
         | 
| 410 | 
            +
                        # p is a stacked batch parameters.
         | 
| 411 | 
            +
                        batch_grad = p.grad
         | 
| 412 | 
            +
                        if p.numel() == p.shape[0]:  # a batch of scalars
         | 
| 413 | 
            +
                            batch_sumsq_orig = batch_grad**2
         | 
| 414 | 
            +
                            # Dummpy values used by following `zip` statement.
         | 
| 415 | 
            +
                            batch_rms_orig = torch.ones(p.shape[0])
         | 
| 416 | 
            +
                        else:
         | 
| 417 | 
            +
                            batch_rms_orig = state["param_rms"]
         | 
| 418 | 
            +
                            batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
         | 
| 419 | 
            +
                                dim=list(range(1, batch_grad.ndim)))
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                        for name, sumsq_orig, rms, grad in zip(batch_param_names,
         | 
| 422 | 
            +
                                                               batch_sumsq_orig,
         | 
| 423 | 
            +
                                                               batch_rms_orig, batch_grad):
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                            proportion_orig = sumsq_orig / tot_sumsq
         | 
| 426 | 
            +
                            all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    assert torch.isclose(
         | 
| 429 | 
            +
                        sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
         | 
| 430 | 
            +
                        torch.tensor(1.0), )
         | 
| 431 | 
            +
                    sorted_by_proportion = {
         | 
| 432 | 
            +
                        k: v
         | 
| 433 | 
            +
                        for k, v in sorted(
         | 
| 434 | 
            +
                            all_sumsq_orig.items(),
         | 
| 435 | 
            +
                            key=lambda item: item[1][0],
         | 
| 436 | 
            +
                            reverse=True, )
         | 
| 437 | 
            +
                    }
         | 
| 438 | 
            +
                    dominant_param_name = next(iter(sorted_by_proportion))
         | 
| 439 | 
            +
                    (dominant_proportion, dominant_sumsq, dominant_rms,
         | 
| 440 | 
            +
                     dominant_grad, ) = sorted_by_proportion[dominant_param_name]
         | 
| 441 | 
            +
                    logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
         | 
| 442 | 
            +
                                 f" with proportion {dominant_proportion:.2f},"
         | 
| 443 | 
            +
                                 f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
         | 
| 444 | 
            +
                                 f"={dominant_sumsq:.3e},"
         | 
| 445 | 
            +
                                 f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
         | 
| 446 | 
            +
                                 f" orig_rms_sq={(dominant_rms**2).item():.3e}")
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                def _step_one_batch(self,
         | 
| 449 | 
            +
                                    group: dict,
         | 
| 450 | 
            +
                                    p: Tensor,
         | 
| 451 | 
            +
                                    state: dict,
         | 
| 452 | 
            +
                                    clipping_scale: float):
         | 
| 453 | 
            +
                    """
         | 
| 454 | 
            +
                    Do the step for one parameter, which is actually going to be a batch of
         | 
| 455 | 
            +
                    `real` parameters, with dim 0 as the batch dim.
         | 
| 456 | 
            +
                    Args:
         | 
| 457 | 
            +
                              group:  dict to look up configuration values
         | 
| 458 | 
            +
                                p: parameter to update (actually multiple parameters stacked together
         | 
| 459 | 
            +
                                   as a batch)
         | 
| 460 | 
            +
                              state: state-dict for p, to look up the optimizer state
         | 
| 461 | 
            +
                    """
         | 
| 462 | 
            +
                    lr = group["lr"]
         | 
| 463 | 
            +
                    size_update_period = group["size_update_period"]
         | 
| 464 | 
            +
                    beta1 = group["betas"][0]
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    grad = p.grad
         | 
| 467 | 
            +
                    if clipping_scale != 1.0:
         | 
| 468 | 
            +
                        grad = grad * clipping_scale
         | 
| 469 | 
            +
                    step = state["step"]
         | 
| 470 | 
            +
                    delta = state["delta"]
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                    delta.mul_(beta1)
         | 
| 473 | 
            +
                    batch_size = p.shape[0]
         | 
| 474 | 
            +
                    numel = p.numel() // batch_size
         | 
| 475 | 
            +
                    if numel > 1:
         | 
| 476 | 
            +
                        # Update the size/scale of p, and set param_rms
         | 
| 477 | 
            +
                        scale_grads = state["scale_grads"]
         | 
| 478 | 
            +
                        scale_grads[step % size_update_period] = (p * grad).sum(
         | 
| 479 | 
            +
                            dim=list(range(1, p.ndim)), keepdim=True)
         | 
| 480 | 
            +
                        if step % size_update_period == size_update_period - 1:
         | 
| 481 | 
            +
                            param_rms = state["param_rms"]  # shape: (batch_size, 1, 1, ..)
         | 
| 482 | 
            +
                            param_rms.copy_((p**2)
         | 
| 483 | 
            +
                                            .mean(dim=list(range(1, p.ndim)), keepdim=True)
         | 
| 484 | 
            +
                                            .sqrt())
         | 
| 485 | 
            +
                            if step > 0:
         | 
| 486 | 
            +
                                # self._size_update() learns the overall scale on the
         | 
| 487 | 
            +
                                # parameter, by shrinking or expanding it.
         | 
| 488 | 
            +
                                self._size_update(group, scale_grads, p, state)
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    if numel == 1:
         | 
| 491 | 
            +
                        # For parameters with 1 element we just use regular Adam.
         | 
| 492 | 
            +
                        # Updates delta.
         | 
| 493 | 
            +
                        self._step_scalar(group, p, state)
         | 
| 494 | 
            +
                    else:
         | 
| 495 | 
            +
                        self._step(group, p, state)
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    state["step"] = step + 1
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                def _size_update(self,
         | 
| 500 | 
            +
                                 group: dict,
         | 
| 501 | 
            +
                                 scale_grads: Tensor,
         | 
| 502 | 
            +
                                 p: Tensor,
         | 
| 503 | 
            +
                                 state: dict) -> None:
         | 
| 504 | 
            +
                    """
         | 
| 505 | 
            +
                           Called only where p.numel() > 1, this updates the scale of the parameter.
         | 
| 506 | 
            +
                           If we imagine: p =  underlying_param * scale.exp(), and we are doing
         | 
| 507 | 
            +
                           gradient descent on underlying param and on scale, this function does the update
         | 
| 508 | 
            +
                           on `scale`.
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                           Args:
         | 
| 511 | 
            +
                          group: dict to look up configuration values
         | 
| 512 | 
            +
                    scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
         | 
| 513 | 
            +
                                  grads w.r.t. the scales.
         | 
| 514 | 
            +
                              p:  The parameter to update
         | 
| 515 | 
            +
                           state: The state-dict of p
         | 
| 516 | 
            +
                    """
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    param_rms = state["param_rms"]
         | 
| 519 | 
            +
                    beta1, beta2 = group["betas"]
         | 
| 520 | 
            +
                    size_lr = group["lr"] * group["scalar_lr_scale"]
         | 
| 521 | 
            +
                    param_min_rms = group["param_min_rms"]
         | 
| 522 | 
            +
                    param_max_rms = group["param_max_rms"]
         | 
| 523 | 
            +
                    eps = group["eps"]
         | 
| 524 | 
            +
                    step = state["step"]
         | 
| 525 | 
            +
                    batch_size = p.shape[0]
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    size_update_period = scale_grads.shape[0]
         | 
| 528 | 
            +
                    # correct beta2 for the size update period: we will have
         | 
| 529 | 
            +
                    # faster decay at this level.
         | 
| 530 | 
            +
                    beta2_corr = beta2**size_update_period
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    scale_exp_avg_sq = state[
         | 
| 533 | 
            +
                        "scale_exp_avg_sq"]  # shape: (batch_size, 1, 1, ..)
         | 
| 534 | 
            +
                    scale_exp_avg_sq.mul_(beta2_corr).add_(
         | 
| 535 | 
            +
                        (scale_grads**2).mean(dim=0),  # mean over dim `size_update_period`
         | 
| 536 | 
            +
                        alpha=1 - beta2_corr, )  # shape is (batch_size, 1, 1, ...)
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                    # The 1st time we reach here is when size_step == 1.
         | 
| 539 | 
            +
                    size_step = (step + 1) // size_update_period
         | 
| 540 | 
            +
                    bias_correction2 = 1 - beta2_corr**size_step
         | 
| 541 | 
            +
                    # we don't bother with bias_correction1; this will help prevent divergence
         | 
| 542 | 
            +
                    # at the start of training.
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    denom = scale_exp_avg_sq.sqrt() + eps
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    scale_step = (-size_lr * (bias_correction2**0.5) *
         | 
| 547 | 
            +
                                  scale_grads.sum(dim=0) / denom)
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                    is_too_small = param_rms < param_min_rms
         | 
| 550 | 
            +
                    is_too_large = param_rms > param_max_rms
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    # when the param gets too small, just don't shrink it any further.
         | 
| 553 | 
            +
                    scale_step.masked_fill_(is_too_small, 0.0)
         | 
| 554 | 
            +
                    # when it gets too large, stop it from getting any larger.
         | 
| 555 | 
            +
                    scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
         | 
| 556 | 
            +
                    delta = state["delta"]
         | 
| 557 | 
            +
                    # the factor of (1-beta1) relates to momentum.
         | 
| 558 | 
            +
                    delta.add_(p * scale_step, alpha=(1 - beta1))
         | 
| 559 | 
            +
             | 
| 560 | 
            +
                def _step(self, group: dict, p: Tensor, state: dict):
         | 
| 561 | 
            +
                    """
         | 
| 562 | 
            +
                    This function does the core update of self.step(), in the case where the members of
         | 
| 563 | 
            +
                    the batch have more than 1 element.
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                    Args:
         | 
| 566 | 
            +
                        group: A dict which will be used to look up configuration values
         | 
| 567 | 
            +
                            p: The parameter to be updated
         | 
| 568 | 
            +
                         grad: The grad of p
         | 
| 569 | 
            +
                        state: The state-dict corresponding to parameter p
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    This function modifies p.
         | 
| 572 | 
            +
                    """
         | 
| 573 | 
            +
                    grad = p.grad
         | 
| 574 | 
            +
                    lr = group["lr"]
         | 
| 575 | 
            +
                    beta1, beta2 = group["betas"]
         | 
| 576 | 
            +
                    eps = group["eps"]
         | 
| 577 | 
            +
                    param_min_rms = group["param_min_rms"]
         | 
| 578 | 
            +
                    step = state["step"]
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                    exp_avg_sq = state["exp_avg_sq"]
         | 
| 581 | 
            +
                    exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
         | 
| 582 | 
            +
             | 
| 583 | 
            +
                    this_step = state["step"] - (state["zero_step"]
         | 
| 584 | 
            +
                                                 if "zero_step" in state else 0)
         | 
| 585 | 
            +
                    bias_correction2 = 1 - beta2**(this_step + 1)
         | 
| 586 | 
            +
                    if bias_correction2 < 0.99:
         | 
| 587 | 
            +
                        # note: not in-place.
         | 
| 588 | 
            +
                        exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                    denom = exp_avg_sq.sqrt()
         | 
| 591 | 
            +
                    denom += eps
         | 
| 592 | 
            +
                    grad = grad / denom
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    delta = state["delta"]
         | 
| 597 | 
            +
                    delta.add_(grad * alpha)
         | 
| 598 | 
            +
                    p.add_(delta)
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                def _step_scalar(self, group: dict, p: Tensor, state: dict):
         | 
| 601 | 
            +
                    """
         | 
| 602 | 
            +
                    A simplified form of the core update for scalar tensors, where we cannot get a good
         | 
| 603 | 
            +
                    estimate of the parameter rms.
         | 
| 604 | 
            +
                    """
         | 
| 605 | 
            +
                    beta1, beta2 = group["betas"]
         | 
| 606 | 
            +
                    scalar_max = group["scalar_max"]
         | 
| 607 | 
            +
                    eps = group["eps"]
         | 
| 608 | 
            +
                    lr = group["lr"] * group["scalar_lr_scale"]
         | 
| 609 | 
            +
                    grad = p.grad
         | 
| 610 | 
            +
             | 
| 611 | 
            +
                    exp_avg_sq = state["exp_avg_sq"]  # shape: (batch_size,)
         | 
| 612 | 
            +
                    exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                    # bias_correction2 is like in Adam.  Don't bother with bias_correction1;
         | 
| 615 | 
            +
                    # slower update at the start will help stability anyway.
         | 
| 616 | 
            +
                    bias_correction2 = 1 - beta2**(state["step"] + 1)
         | 
| 617 | 
            +
                    denom = (exp_avg_sq / bias_correction2).sqrt() + eps
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                    delta = state["delta"]
         | 
| 620 | 
            +
                    delta.add_(grad / denom, alpha=-lr * (1 - beta1))
         | 
| 621 | 
            +
                    p.clamp_(min=-scalar_max, max=scalar_max)
         | 
| 622 | 
            +
                    p.add_(delta)
         | 
    	
        AR/modules/patched_mha_with_cache.py
    ADDED
    
    | @@ -0,0 +1,465 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from torch.nn.functional import *
         | 
| 2 | 
            +
            from torch.nn.functional import (
         | 
| 3 | 
            +
                _mha_shape_check,
         | 
| 4 | 
            +
                _canonical_mask,
         | 
| 5 | 
            +
                _none_or_dtype,
         | 
| 6 | 
            +
                _in_projection_packed,
         | 
| 7 | 
            +
            )
         | 
| 8 | 
            +
            from torch.nn import functional as F
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            # Tensor = torch.Tensor
         | 
| 11 | 
            +
            # from typing import Callable, List, Optional, Tuple, Union
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            def multi_head_attention_forward_patched(
         | 
| 15 | 
            +
                query: Tensor,
         | 
| 16 | 
            +
                key: Tensor,
         | 
| 17 | 
            +
                value: Tensor,
         | 
| 18 | 
            +
                embed_dim_to_check: int,
         | 
| 19 | 
            +
                num_heads: int,
         | 
| 20 | 
            +
                in_proj_weight: Optional[Tensor],
         | 
| 21 | 
            +
                in_proj_bias: Optional[Tensor],
         | 
| 22 | 
            +
                bias_k: Optional[Tensor],
         | 
| 23 | 
            +
                bias_v: Optional[Tensor],
         | 
| 24 | 
            +
                add_zero_attn: bool,
         | 
| 25 | 
            +
                dropout_p: float,
         | 
| 26 | 
            +
                out_proj_weight: Tensor,
         | 
| 27 | 
            +
                out_proj_bias: Optional[Tensor],
         | 
| 28 | 
            +
                training: bool = True,
         | 
| 29 | 
            +
                key_padding_mask: Optional[Tensor] = None,
         | 
| 30 | 
            +
                need_weights: bool = True,
         | 
| 31 | 
            +
                attn_mask: Optional[Tensor] = None,
         | 
| 32 | 
            +
                use_separate_proj_weight: bool = False,
         | 
| 33 | 
            +
                q_proj_weight: Optional[Tensor] = None,
         | 
| 34 | 
            +
                k_proj_weight: Optional[Tensor] = None,
         | 
| 35 | 
            +
                v_proj_weight: Optional[Tensor] = None,
         | 
| 36 | 
            +
                static_k: Optional[Tensor] = None,
         | 
| 37 | 
            +
                static_v: Optional[Tensor] = None,
         | 
| 38 | 
            +
                average_attn_weights: bool = True,
         | 
| 39 | 
            +
                is_causal: bool = False,
         | 
| 40 | 
            +
                cache=None,
         | 
| 41 | 
            +
            ) -> Tuple[Tensor, Optional[Tensor]]:
         | 
| 42 | 
            +
                r"""
         | 
| 43 | 
            +
                Args:
         | 
| 44 | 
            +
                    query, key, value: map a query and a set of key-value pairs to an output.
         | 
| 45 | 
            +
                        See "Attention Is All You Need" for more details.
         | 
| 46 | 
            +
                    embed_dim_to_check: total dimension of the model.
         | 
| 47 | 
            +
                    num_heads: parallel attention heads.
         | 
| 48 | 
            +
                    in_proj_weight, in_proj_bias: input projection weight and bias.
         | 
| 49 | 
            +
                    bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
         | 
| 50 | 
            +
                    add_zero_attn: add a new batch of zeros to the key and
         | 
| 51 | 
            +
                                   value sequences at dim=1.
         | 
| 52 | 
            +
                    dropout_p: probability of an element to be zeroed.
         | 
| 53 | 
            +
                    out_proj_weight, out_proj_bias: the output projection weight and bias.
         | 
| 54 | 
            +
                    training: apply dropout if is ``True``.
         | 
| 55 | 
            +
                    key_padding_mask: if provided, specified padding elements in the key will
         | 
| 56 | 
            +
                        be ignored by the attention. This is an binary mask. When the value is True,
         | 
| 57 | 
            +
                        the corresponding value on the attention layer will be filled with -inf.
         | 
| 58 | 
            +
                    need_weights: output attn_output_weights.
         | 
| 59 | 
            +
                        Default: `True`
         | 
| 60 | 
            +
                        Note: `needs_weight` defaults to `True`, but should be set to `False`
         | 
| 61 | 
            +
                        For best performance when attention weights are not nedeeded.
         | 
| 62 | 
            +
                        *Setting needs_weights to `True`
         | 
| 63 | 
            +
                        leads to a significant performance degradation.*
         | 
| 64 | 
            +
                    attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
         | 
| 65 | 
            +
                        the batches while a 3D mask allows to specify a different mask for the entries of each batch.
         | 
| 66 | 
            +
                    is_causal: If specified, applies a causal mask as attention mask, and ignores
         | 
| 67 | 
            +
                        attn_mask for computing scaled dot product attention.
         | 
| 68 | 
            +
                        Default: ``False``.
         | 
| 69 | 
            +
                        .. warning::
         | 
| 70 | 
            +
                            is_causal is provides a hint that the attn_mask is the
         | 
| 71 | 
            +
                            causal mask.Providing incorrect hints can result in
         | 
| 72 | 
            +
                            incorrect execution, including forward and backward
         | 
| 73 | 
            +
                            compatibility.
         | 
| 74 | 
            +
                    use_separate_proj_weight: the function accept the proj. weights for query, key,
         | 
| 75 | 
            +
                        and value in different forms. If false, in_proj_weight will be used, which is
         | 
| 76 | 
            +
                        a combination of q_proj_weight, k_proj_weight, v_proj_weight.
         | 
| 77 | 
            +
                    q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
         | 
| 78 | 
            +
                    static_k, static_v: static key and value used for attention operators.
         | 
| 79 | 
            +
                    average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
         | 
| 80 | 
            +
                        Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
         | 
| 81 | 
            +
                        when ``need_weights=True.``. Default: True
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
                Shape:
         | 
| 85 | 
            +
                    Inputs:
         | 
| 86 | 
            +
                    - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
         | 
| 87 | 
            +
                      the embedding dimension.
         | 
| 88 | 
            +
                    - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
         | 
| 89 | 
            +
                      the embedding dimension.
         | 
| 90 | 
            +
                    - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
         | 
| 91 | 
            +
                      the embedding dimension.
         | 
| 92 | 
            +
                    - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
         | 
| 93 | 
            +
                      If a FloatTensor is provided, it will be directly added to the value.
         | 
| 94 | 
            +
                      If a BoolTensor is provided, the positions with the
         | 
| 95 | 
            +
                      value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
         | 
| 96 | 
            +
                    - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
         | 
| 97 | 
            +
                      3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
         | 
| 98 | 
            +
                      S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
         | 
| 99 | 
            +
                      positions. If a BoolTensor is provided, positions with ``True``
         | 
| 100 | 
            +
                      are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
         | 
| 101 | 
            +
                      is provided, it will be added to the attention weight.
         | 
| 102 | 
            +
                    - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
         | 
| 103 | 
            +
                      N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
         | 
| 104 | 
            +
                    - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
         | 
| 105 | 
            +
                      N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    Outputs:
         | 
| 108 | 
            +
                    - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
         | 
| 109 | 
            +
                      E is the embedding dimension.
         | 
| 110 | 
            +
                    - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
         | 
| 111 | 
            +
                      attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
         | 
| 112 | 
            +
                      :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
         | 
| 113 | 
            +
                      :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
         | 
| 114 | 
            +
                      head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                tens_ops = (
         | 
| 117 | 
            +
                    query,
         | 
| 118 | 
            +
                    key,
         | 
| 119 | 
            +
                    value,
         | 
| 120 | 
            +
                    in_proj_weight,
         | 
| 121 | 
            +
                    in_proj_bias,
         | 
| 122 | 
            +
                    bias_k,
         | 
| 123 | 
            +
                    bias_v,
         | 
| 124 | 
            +
                    out_proj_weight,
         | 
| 125 | 
            +
                    out_proj_bias,
         | 
| 126 | 
            +
                )
         | 
| 127 | 
            +
                if has_torch_function(tens_ops):
         | 
| 128 | 
            +
                    return handle_torch_function(
         | 
| 129 | 
            +
                        multi_head_attention_forward,
         | 
| 130 | 
            +
                        tens_ops,
         | 
| 131 | 
            +
                        query,
         | 
| 132 | 
            +
                        key,
         | 
| 133 | 
            +
                        value,
         | 
| 134 | 
            +
                        embed_dim_to_check,
         | 
| 135 | 
            +
                        num_heads,
         | 
| 136 | 
            +
                        in_proj_weight,
         | 
| 137 | 
            +
                        in_proj_bias,
         | 
| 138 | 
            +
                        bias_k,
         | 
| 139 | 
            +
                        bias_v,
         | 
| 140 | 
            +
                        add_zero_attn,
         | 
| 141 | 
            +
                        dropout_p,
         | 
| 142 | 
            +
                        out_proj_weight,
         | 
| 143 | 
            +
                        out_proj_bias,
         | 
| 144 | 
            +
                        training=training,
         | 
| 145 | 
            +
                        key_padding_mask=key_padding_mask,
         | 
| 146 | 
            +
                        need_weights=need_weights,
         | 
| 147 | 
            +
                        attn_mask=attn_mask,
         | 
| 148 | 
            +
                        is_causal=is_causal,
         | 
| 149 | 
            +
                        use_separate_proj_weight=use_separate_proj_weight,
         | 
| 150 | 
            +
                        q_proj_weight=q_proj_weight,
         | 
| 151 | 
            +
                        k_proj_weight=k_proj_weight,
         | 
| 152 | 
            +
                        v_proj_weight=v_proj_weight,
         | 
| 153 | 
            +
                        static_k=static_k,
         | 
| 154 | 
            +
                        static_v=static_v,
         | 
| 155 | 
            +
                        average_attn_weights=average_attn_weights,
         | 
| 156 | 
            +
                        cache=cache,
         | 
| 157 | 
            +
                    )
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                is_batched = _mha_shape_check(
         | 
| 160 | 
            +
                    query, key, value, key_padding_mask, attn_mask, num_heads
         | 
| 161 | 
            +
                )
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
         | 
| 164 | 
            +
                # is batched, run the computation and before returning squeeze the
         | 
| 165 | 
            +
                # batch dimension so that the output doesn't carry this temporary batch dimension.
         | 
| 166 | 
            +
                if not is_batched:
         | 
| 167 | 
            +
                    # unsqueeze if the input is unbatched
         | 
| 168 | 
            +
                    query = query.unsqueeze(1)
         | 
| 169 | 
            +
                    key = key.unsqueeze(1)
         | 
| 170 | 
            +
                    value = value.unsqueeze(1)
         | 
| 171 | 
            +
                    if key_padding_mask is not None:
         | 
| 172 | 
            +
                        key_padding_mask = key_padding_mask.unsqueeze(0)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                # set up shape vars
         | 
| 175 | 
            +
                tgt_len, bsz, embed_dim = query.shape
         | 
| 176 | 
            +
                src_len, _, _ = key.shape
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                key_padding_mask = _canonical_mask(
         | 
| 179 | 
            +
                    mask=key_padding_mask,
         | 
| 180 | 
            +
                    mask_name="key_padding_mask",
         | 
| 181 | 
            +
                    other_type=_none_or_dtype(attn_mask),
         | 
| 182 | 
            +
                    other_name="attn_mask",
         | 
| 183 | 
            +
                    target_type=query.dtype,
         | 
| 184 | 
            +
                )
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                if is_causal and attn_mask is None:
         | 
| 187 | 
            +
                    raise RuntimeError(
         | 
| 188 | 
            +
                        "Need attn_mask if specifying the is_causal hint. "
         | 
| 189 | 
            +
                        "You may use the Transformer module method "
         | 
| 190 | 
            +
                        "`generate_square_subsequent_mask` to create this mask."
         | 
| 191 | 
            +
                    )
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                if is_causal and key_padding_mask is None and not need_weights:
         | 
| 194 | 
            +
                    # when we have a kpm or need weights, we need attn_mask
         | 
| 195 | 
            +
                    # Otherwise, we use the is_causal hint go as is_causal
         | 
| 196 | 
            +
                    # indicator to SDPA.
         | 
| 197 | 
            +
                    attn_mask = None
         | 
| 198 | 
            +
                else:
         | 
| 199 | 
            +
                    attn_mask = _canonical_mask(
         | 
| 200 | 
            +
                        mask=attn_mask,
         | 
| 201 | 
            +
                        mask_name="attn_mask",
         | 
| 202 | 
            +
                        other_type=None,
         | 
| 203 | 
            +
                        other_name="",
         | 
| 204 | 
            +
                        target_type=query.dtype,
         | 
| 205 | 
            +
                        check_other=False,
         | 
| 206 | 
            +
                    )
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    if key_padding_mask is not None:
         | 
| 209 | 
            +
                        # We have the attn_mask, and use that to merge kpm into it.
         | 
| 210 | 
            +
                        # Turn off use of is_causal hint, as the merged mask is no
         | 
| 211 | 
            +
                        # longer causal.
         | 
| 212 | 
            +
                        is_causal = False
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                assert (
         | 
| 215 | 
            +
                    embed_dim == embed_dim_to_check
         | 
| 216 | 
            +
                ), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
         | 
| 217 | 
            +
                if isinstance(embed_dim, torch.Tensor):
         | 
| 218 | 
            +
                    # embed_dim can be a tensor when JIT tracing
         | 
| 219 | 
            +
                    head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
         | 
| 220 | 
            +
                else:
         | 
| 221 | 
            +
                    head_dim = embed_dim // num_heads
         | 
| 222 | 
            +
                assert (
         | 
| 223 | 
            +
                    head_dim * num_heads == embed_dim
         | 
| 224 | 
            +
                ), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
         | 
| 225 | 
            +
                if use_separate_proj_weight:
         | 
| 226 | 
            +
                    # allow MHA to have different embedding dimensions when separate projection weights are used
         | 
| 227 | 
            +
                    assert (
         | 
| 228 | 
            +
                        key.shape[:2] == value.shape[:2]
         | 
| 229 | 
            +
                    ), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
         | 
| 230 | 
            +
                else:
         | 
| 231 | 
            +
                    assert (
         | 
| 232 | 
            +
                        key.shape == value.shape
         | 
| 233 | 
            +
                    ), f"key shape {key.shape} does not match value shape {value.shape}"
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                #
         | 
| 236 | 
            +
                # compute in-projection
         | 
| 237 | 
            +
                #
         | 
| 238 | 
            +
                if not use_separate_proj_weight:
         | 
| 239 | 
            +
                    assert (
         | 
| 240 | 
            +
                        in_proj_weight is not None
         | 
| 241 | 
            +
                    ), "use_separate_proj_weight is False but in_proj_weight is None"
         | 
| 242 | 
            +
                    q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
         | 
| 243 | 
            +
                else:
         | 
| 244 | 
            +
                    assert (
         | 
| 245 | 
            +
                        q_proj_weight is not None
         | 
| 246 | 
            +
                    ), "use_separate_proj_weight is True but q_proj_weight is None"
         | 
| 247 | 
            +
                    assert (
         | 
| 248 | 
            +
                        k_proj_weight is not None
         | 
| 249 | 
            +
                    ), "use_separate_proj_weight is True but k_proj_weight is None"
         | 
| 250 | 
            +
                    assert (
         | 
| 251 | 
            +
                        v_proj_weight is not None
         | 
| 252 | 
            +
                    ), "use_separate_proj_weight is True but v_proj_weight is None"
         | 
| 253 | 
            +
                    if in_proj_bias is None:
         | 
| 254 | 
            +
                        b_q = b_k = b_v = None
         | 
| 255 | 
            +
                    else:
         | 
| 256 | 
            +
                        b_q, b_k, b_v = in_proj_bias.chunk(3)
         | 
| 257 | 
            +
                    q, k, v = _in_projection(
         | 
| 258 | 
            +
                        query,
         | 
| 259 | 
            +
                        key,
         | 
| 260 | 
            +
                        value,
         | 
| 261 | 
            +
                        q_proj_weight,
         | 
| 262 | 
            +
                        k_proj_weight,
         | 
| 263 | 
            +
                        v_proj_weight,
         | 
| 264 | 
            +
                        b_q,
         | 
| 265 | 
            +
                        b_k,
         | 
| 266 | 
            +
                        b_v,
         | 
| 267 | 
            +
                    )
         | 
| 268 | 
            +
                if cache != None:
         | 
| 269 | 
            +
                    if cache["first_infer"] == 1:
         | 
| 270 | 
            +
                        cache["k"][cache["stage"]] = k
         | 
| 271 | 
            +
                        # print(0,cache["k"].shape)
         | 
| 272 | 
            +
                        cache["v"][cache["stage"]] = v
         | 
| 273 | 
            +
                    else:  ###12个layer每个都要留自己的cache_kv
         | 
| 274 | 
            +
                        # print(1,cache["k"].shape)
         | 
| 275 | 
            +
                        cache["k"][cache["stage"]] = torch.cat(
         | 
| 276 | 
            +
                            [cache["k"][cache["stage"]], k], 0
         | 
| 277 | 
            +
                        )  ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
         | 
| 278 | 
            +
                        cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
         | 
| 279 | 
            +
                        # print(2, cache["k"].shape)
         | 
| 280 | 
            +
                        src_len = cache["k"][cache["stage"]].shape[0]
         | 
| 281 | 
            +
                        k = cache["k"][cache["stage"]]
         | 
| 282 | 
            +
                        v = cache["v"][cache["stage"]]
         | 
| 283 | 
            +
                        # if attn_mask is not None:
         | 
| 284 | 
            +
                        #     attn_mask=attn_mask[-1:,]
         | 
| 285 | 
            +
                        # print(attn_mask.shape,attn_mask)
         | 
| 286 | 
            +
                    cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
         | 
| 287 | 
            +
                # print(2333,cache)
         | 
| 288 | 
            +
                # prep attention mask
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                attn_mask = _canonical_mask(
         | 
| 291 | 
            +
                    mask=attn_mask,
         | 
| 292 | 
            +
                    mask_name="attn_mask",
         | 
| 293 | 
            +
                    other_type=None,
         | 
| 294 | 
            +
                    other_name="",
         | 
| 295 | 
            +
                    target_type=q.dtype,
         | 
| 296 | 
            +
                    check_other=False,
         | 
| 297 | 
            +
                )
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                if attn_mask is not None:
         | 
| 300 | 
            +
                    # ensure attn_mask's dim is 3
         | 
| 301 | 
            +
                    if attn_mask.dim() == 2:
         | 
| 302 | 
            +
                        correct_2d_size = (tgt_len, src_len)
         | 
| 303 | 
            +
                        if attn_mask.shape != correct_2d_size:
         | 
| 304 | 
            +
                            raise RuntimeError(
         | 
| 305 | 
            +
                                f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
         | 
| 306 | 
            +
                            )
         | 
| 307 | 
            +
                        attn_mask = attn_mask.unsqueeze(0)
         | 
| 308 | 
            +
                    elif attn_mask.dim() == 3:
         | 
| 309 | 
            +
                        correct_3d_size = (bsz * num_heads, tgt_len, src_len)
         | 
| 310 | 
            +
                        if attn_mask.shape != correct_3d_size:
         | 
| 311 | 
            +
                            raise RuntimeError(
         | 
| 312 | 
            +
                                f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
         | 
| 313 | 
            +
                            )
         | 
| 314 | 
            +
                    else:
         | 
| 315 | 
            +
                        raise RuntimeError(
         | 
| 316 | 
            +
                            f"attn_mask's dimension {attn_mask.dim()} is not supported"
         | 
| 317 | 
            +
                        )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                # add bias along batch dimension (currently second)
         | 
| 320 | 
            +
                if bias_k is not None and bias_v is not None:
         | 
| 321 | 
            +
                    assert static_k is None, "bias cannot be added to static key."
         | 
| 322 | 
            +
                    assert static_v is None, "bias cannot be added to static value."
         | 
| 323 | 
            +
                    k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
         | 
| 324 | 
            +
                    v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
         | 
| 325 | 
            +
                    if attn_mask is not None:
         | 
| 326 | 
            +
                        attn_mask = pad(attn_mask, (0, 1))
         | 
| 327 | 
            +
                    if key_padding_mask is not None:
         | 
| 328 | 
            +
                        key_padding_mask = pad(key_padding_mask, (0, 1))
         | 
| 329 | 
            +
                else:
         | 
| 330 | 
            +
                    assert bias_k is None
         | 
| 331 | 
            +
                    assert bias_v is None
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                #
         | 
| 334 | 
            +
                # reshape q, k, v for multihead attention and make em batch first
         | 
| 335 | 
            +
                #
         | 
| 336 | 
            +
                q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
         | 
| 337 | 
            +
                if static_k is None:
         | 
| 338 | 
            +
                    k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
         | 
| 339 | 
            +
                else:
         | 
| 340 | 
            +
                    # TODO finish disentangling control flow so we don't do in-projections when statics are passed
         | 
| 341 | 
            +
                    assert (
         | 
| 342 | 
            +
                        static_k.size(0) == bsz * num_heads
         | 
| 343 | 
            +
                    ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
         | 
| 344 | 
            +
                    assert (
         | 
| 345 | 
            +
                        static_k.size(2) == head_dim
         | 
| 346 | 
            +
                    ), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
         | 
| 347 | 
            +
                    k = static_k
         | 
| 348 | 
            +
                if static_v is None:
         | 
| 349 | 
            +
                    v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
         | 
| 350 | 
            +
                else:
         | 
| 351 | 
            +
                    # TODO finish disentangling control flow so we don't do in-projections when statics are passed
         | 
| 352 | 
            +
                    assert (
         | 
| 353 | 
            +
                        static_v.size(0) == bsz * num_heads
         | 
| 354 | 
            +
                    ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
         | 
| 355 | 
            +
                    assert (
         | 
| 356 | 
            +
                        static_v.size(2) == head_dim
         | 
| 357 | 
            +
                    ), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
         | 
| 358 | 
            +
                    v = static_v
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                # add zero attention along batch dimension (now first)
         | 
| 361 | 
            +
                if add_zero_attn:
         | 
| 362 | 
            +
                    zero_attn_shape = (bsz * num_heads, 1, head_dim)
         | 
| 363 | 
            +
                    k = torch.cat(
         | 
| 364 | 
            +
                        [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
         | 
| 365 | 
            +
                    )
         | 
| 366 | 
            +
                    v = torch.cat(
         | 
| 367 | 
            +
                        [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
         | 
| 368 | 
            +
                    )
         | 
| 369 | 
            +
                    if attn_mask is not None:
         | 
| 370 | 
            +
                        attn_mask = pad(attn_mask, (0, 1))
         | 
| 371 | 
            +
                    if key_padding_mask is not None:
         | 
| 372 | 
            +
                        key_padding_mask = pad(key_padding_mask, (0, 1))
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                # update source sequence length after adjustments
         | 
| 375 | 
            +
                src_len = k.size(1)
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                # merge key padding and attention masks
         | 
| 378 | 
            +
                if key_padding_mask is not None:
         | 
| 379 | 
            +
                    assert key_padding_mask.shape == (
         | 
| 380 | 
            +
                        bsz,
         | 
| 381 | 
            +
                        src_len,
         | 
| 382 | 
            +
                    ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
         | 
| 383 | 
            +
                    key_padding_mask = (
         | 
| 384 | 
            +
                        key_padding_mask.view(bsz, 1, 1, src_len)
         | 
| 385 | 
            +
                        .expand(-1, num_heads, -1, -1)
         | 
| 386 | 
            +
                        .reshape(bsz * num_heads, 1, src_len)
         | 
| 387 | 
            +
                    )
         | 
| 388 | 
            +
                    if attn_mask is None:
         | 
| 389 | 
            +
                        attn_mask = key_padding_mask
         | 
| 390 | 
            +
                    else:
         | 
| 391 | 
            +
                        attn_mask = attn_mask + key_padding_mask
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                # adjust dropout probability
         | 
| 394 | 
            +
                if not training:
         | 
| 395 | 
            +
                    dropout_p = 0.0
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                #
         | 
| 398 | 
            +
                # (deep breath) calculate attention and out projection
         | 
| 399 | 
            +
                #
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                if need_weights:
         | 
| 402 | 
            +
                    B, Nt, E = q.shape
         | 
| 403 | 
            +
                    q_scaled = q / math.sqrt(E)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    assert not (
         | 
| 406 | 
            +
                        is_causal and attn_mask is None
         | 
| 407 | 
            +
                    ), "FIXME: is_causal not implemented for need_weights"
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    if attn_mask is not None:
         | 
| 410 | 
            +
                        attn_output_weights = torch.baddbmm(
         | 
| 411 | 
            +
                            attn_mask, q_scaled, k.transpose(-2, -1)
         | 
| 412 | 
            +
                        )
         | 
| 413 | 
            +
                    else:
         | 
| 414 | 
            +
                        attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
         | 
| 415 | 
            +
                    attn_output_weights = softmax(attn_output_weights, dim=-1)
         | 
| 416 | 
            +
                    if dropout_p > 0.0:
         | 
| 417 | 
            +
                        attn_output_weights = dropout(attn_output_weights, p=dropout_p)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    attn_output = torch.bmm(attn_output_weights, v)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    attn_output = (
         | 
| 422 | 
            +
                        attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
         | 
| 423 | 
            +
                    )
         | 
| 424 | 
            +
                    attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
         | 
| 425 | 
            +
                    attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    # optionally average attention weights over heads
         | 
| 428 | 
            +
                    attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
         | 
| 429 | 
            +
                    if average_attn_weights:
         | 
| 430 | 
            +
                        attn_output_weights = attn_output_weights.mean(dim=1)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                    if not is_batched:
         | 
| 433 | 
            +
                        # squeeze the output if input was unbatched
         | 
| 434 | 
            +
                        attn_output = attn_output.squeeze(1)
         | 
| 435 | 
            +
                        attn_output_weights = attn_output_weights.squeeze(0)
         | 
| 436 | 
            +
                    return attn_output, attn_output_weights
         | 
| 437 | 
            +
                else:
         | 
| 438 | 
            +
                    # attn_mask can be either (L,S) or (N*num_heads, L, S)
         | 
| 439 | 
            +
                    # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
         | 
| 440 | 
            +
                    # in order to match the input for SDPA of (N, num_heads, L, S)
         | 
| 441 | 
            +
                    if attn_mask is not None:
         | 
| 442 | 
            +
                        if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
         | 
| 443 | 
            +
                            attn_mask = attn_mask.unsqueeze(0)
         | 
| 444 | 
            +
                        else:
         | 
| 445 | 
            +
                            attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    q = q.view(bsz, num_heads, tgt_len, head_dim)
         | 
| 448 | 
            +
                    k = k.view(bsz, num_heads, src_len, head_dim)
         | 
| 449 | 
            +
                    v = v.view(bsz, num_heads, src_len, head_dim)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
         | 
| 452 | 
            +
                    attn_output = scaled_dot_product_attention(
         | 
| 453 | 
            +
                        q, k, v, attn_mask, dropout_p, is_causal
         | 
| 454 | 
            +
                    )
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    attn_output = (
         | 
| 457 | 
            +
                        attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
         | 
| 458 | 
            +
                    )
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                    attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
         | 
| 461 | 
            +
                    attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
         | 
| 462 | 
            +
                    if not is_batched:
         | 
| 463 | 
            +
                        # squeeze the output if input was unbatched
         | 
| 464 | 
            +
                        attn_output = attn_output.squeeze(1)
         | 
| 465 | 
            +
                    return attn_output, None
         | 
    	
        AR/modules/patched_mha_with_cache_onnx.py
    ADDED
    
    | @@ -0,0 +1,92 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from torch.nn.functional import *
         | 
| 2 | 
            +
            from torch.nn.functional import (
         | 
| 3 | 
            +
                _mha_shape_check,
         | 
| 4 | 
            +
                _canonical_mask,
         | 
| 5 | 
            +
                _none_or_dtype,
         | 
| 6 | 
            +
                _in_projection_packed,
         | 
| 7 | 
            +
            )
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            def multi_head_attention_forward_patched(
         | 
| 10 | 
            +
                query,
         | 
| 11 | 
            +
                key,
         | 
| 12 | 
            +
                value,
         | 
| 13 | 
            +
                embed_dim_to_check: int,
         | 
| 14 | 
            +
                num_heads: int,
         | 
| 15 | 
            +
                in_proj_weight,
         | 
| 16 | 
            +
                in_proj_bias: Optional[Tensor],
         | 
| 17 | 
            +
                bias_k: Optional[Tensor],
         | 
| 18 | 
            +
                bias_v: Optional[Tensor],
         | 
| 19 | 
            +
                add_zero_attn: bool,
         | 
| 20 | 
            +
                dropout_p: float,
         | 
| 21 | 
            +
                out_proj_weight: Tensor,
         | 
| 22 | 
            +
                out_proj_bias: Optional[Tensor],
         | 
| 23 | 
            +
                training: bool = True,
         | 
| 24 | 
            +
                key_padding_mask: Optional[Tensor] = None,
         | 
| 25 | 
            +
                need_weights: bool = True,
         | 
| 26 | 
            +
                attn_mask: Optional[Tensor] = None,
         | 
| 27 | 
            +
                use_separate_proj_weight: bool = False,
         | 
| 28 | 
            +
                q_proj_weight: Optional[Tensor] = None,
         | 
| 29 | 
            +
                k_proj_weight: Optional[Tensor] = None,
         | 
| 30 | 
            +
                v_proj_weight: Optional[Tensor] = None,
         | 
| 31 | 
            +
                static_k: Optional[Tensor] = None,
         | 
| 32 | 
            +
                static_v: Optional[Tensor] = None,
         | 
| 33 | 
            +
                average_attn_weights: bool = True,
         | 
| 34 | 
            +
                is_causal: bool = False,
         | 
| 35 | 
            +
                cache=None,
         | 
| 36 | 
            +
            ) -> Tuple[Tensor, Optional[Tensor]]:
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                # set up shape vars
         | 
| 39 | 
            +
                _, _, embed_dim = query.shape
         | 
| 40 | 
            +
                attn_mask = _canonical_mask(
         | 
| 41 | 
            +
                    mask=attn_mask,
         | 
| 42 | 
            +
                    mask_name="attn_mask",
         | 
| 43 | 
            +
                    other_type=None,
         | 
| 44 | 
            +
                    other_name="",
         | 
| 45 | 
            +
                    target_type=query.dtype,
         | 
| 46 | 
            +
                    check_other=False,
         | 
| 47 | 
            +
                )
         | 
| 48 | 
            +
                head_dim = embed_dim // num_heads
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                proj_qkv = linear(query, in_proj_weight, in_proj_bias)
         | 
| 51 | 
            +
                proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
         | 
| 52 | 
            +
                q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                if cache["first_infer"] == 1:
         | 
| 55 | 
            +
                    cache["k"][cache["stage"]] = k
         | 
| 56 | 
            +
                    cache["v"][cache["stage"]] = v
         | 
| 57 | 
            +
                else:
         | 
| 58 | 
            +
                    cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
         | 
| 59 | 
            +
                    cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
         | 
| 60 | 
            +
                    k = cache["k"][cache["stage"]]
         | 
| 61 | 
            +
                    v = cache["v"][cache["stage"]]
         | 
| 62 | 
            +
                cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                attn_mask = _canonical_mask(
         | 
| 65 | 
            +
                    mask=attn_mask,
         | 
| 66 | 
            +
                    mask_name="attn_mask",
         | 
| 67 | 
            +
                    other_type=None,
         | 
| 68 | 
            +
                    other_name="",
         | 
| 69 | 
            +
                    target_type=q.dtype,
         | 
| 70 | 
            +
                    check_other=False,
         | 
| 71 | 
            +
                )
         | 
| 72 | 
            +
                attn_mask = attn_mask.unsqueeze(0)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                q = q.view(-1, num_heads, head_dim).transpose(0, 1)
         | 
| 75 | 
            +
                k = k.view(-1, num_heads, head_dim).transpose(0, 1)
         | 
| 76 | 
            +
                v = v.view(-1, num_heads, head_dim).transpose(0, 1)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                dropout_p = 0.0
         | 
| 79 | 
            +
                attn_mask = attn_mask.unsqueeze(0)
         | 
| 80 | 
            +
                q = q.view(num_heads, -1, head_dim).unsqueeze(0)
         | 
| 81 | 
            +
                k = k.view(num_heads, -1, head_dim).unsqueeze(0)
         | 
| 82 | 
            +
                v = v.view(num_heads, -1, head_dim).unsqueeze(0)
         | 
| 83 | 
            +
                attn_output = scaled_dot_product_attention(
         | 
| 84 | 
            +
                    q, k, v, attn_mask, dropout_p, is_causal
         | 
| 85 | 
            +
                )
         | 
| 86 | 
            +
                attn_output = (
         | 
| 87 | 
            +
                    attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
         | 
| 88 | 
            +
                )
         | 
| 89 | 
            +
                attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
         | 
| 90 | 
            +
                attn_output = attn_output.view(-1, 1, attn_output.size(1))
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                return attn_output
         | 
    	
        AR/modules/scaling.py
    ADDED
    
    | @@ -0,0 +1,335 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright    2022  Xiaomi Corp.        (authors: Daniel Povey)
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # See ../../../../LICENSE for clarification regarding multiple authors
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
            import logging
         | 
| 17 | 
            +
            import math
         | 
| 18 | 
            +
            import random
         | 
| 19 | 
            +
            from typing import Optional
         | 
| 20 | 
            +
            from typing import Tuple
         | 
| 21 | 
            +
            from typing import Union
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
            import torch.nn as nn
         | 
| 25 | 
            +
            from torch import Tensor
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            class DoubleSwishFunction(torch.autograd.Function):
         | 
| 29 | 
            +
                """
         | 
| 30 | 
            +
                  double_swish(x) = x * torch.sigmoid(x-1)
         | 
| 31 | 
            +
                This is a definition, originally motivated by its close numerical
         | 
| 32 | 
            +
                similarity to swish(swish(x)), where swish(x) =  x * sigmoid(x).
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                Memory-efficient derivative computation:
         | 
| 35 | 
            +
                 double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
         | 
| 36 | 
            +
                 double_swish'(x) = d/dx double_swish(x) =  x * s'(x) + x' * s(x) = x * s'(x) + s(x).
         | 
| 37 | 
            +
                 Now, s'(x) = s(x) * (1-s(x)).
         | 
| 38 | 
            +
                 double_swish'(x) =  x * s'(x) + s(x).
         | 
| 39 | 
            +
                                  =  x * s(x) * (1-s(x)) + s(x).
         | 
| 40 | 
            +
                                 = double_swish(x) * (1-s(x)) + s(x)
         | 
| 41 | 
            +
                 ... so we just need to remember s(x) but not x itself.
         | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                @staticmethod
         | 
| 45 | 
            +
                def forward(ctx, x: Tensor) -> Tensor:
         | 
| 46 | 
            +
                    requires_grad = x.requires_grad
         | 
| 47 | 
            +
                    x_dtype = x.dtype
         | 
| 48 | 
            +
                    if x.dtype == torch.float16:
         | 
| 49 | 
            +
                        x = x.to(torch.float32)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    s = torch.sigmoid(x - 1.0)
         | 
| 52 | 
            +
                    y = x * s
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    if requires_grad:
         | 
| 55 | 
            +
                        deriv = y * (1 - s) + s
         | 
| 56 | 
            +
                        # notes on derivative of x * sigmoid(x - 1):
         | 
| 57 | 
            +
                        # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
         | 
| 58 | 
            +
                        # min \simeq -0.043638.  Take floor as -0.043637 so it's a lower bund
         | 
| 59 | 
            +
                        # max \simeq 1.1990.   Take ceil to be 1.2 so it's an upper bound.
         | 
| 60 | 
            +
                        # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
         | 
| 61 | 
            +
                        # floors), should be expectation-preserving.
         | 
| 62 | 
            +
                        floor = -0.043637
         | 
| 63 | 
            +
                        ceil = 1.2
         | 
| 64 | 
            +
                        d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
         | 
| 65 | 
            +
                            deriv
         | 
| 66 | 
            +
                        )
         | 
| 67 | 
            +
                        if __name__ == "__main__":
         | 
| 68 | 
            +
                            # for self-testing only.
         | 
| 69 | 
            +
                            assert d_scaled.min() >= 0.0
         | 
| 70 | 
            +
                            assert d_scaled.max() < 256.0
         | 
| 71 | 
            +
                        d_int = d_scaled.to(torch.uint8)
         | 
| 72 | 
            +
                        ctx.save_for_backward(d_int)
         | 
| 73 | 
            +
                    if x.dtype == torch.float16 or torch.is_autocast_enabled():
         | 
| 74 | 
            +
                        y = y.to(torch.float16)
         | 
| 75 | 
            +
                    return y
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                @staticmethod
         | 
| 78 | 
            +
                def backward(ctx, y_grad: Tensor) -> Tensor:
         | 
| 79 | 
            +
                    (d,) = ctx.saved_tensors
         | 
| 80 | 
            +
                    # the same constants as used in forward pass.
         | 
| 81 | 
            +
                    floor = -0.043637
         | 
| 82 | 
            +
                    ceil = 1.2
         | 
| 83 | 
            +
                    d = d * ((ceil - floor) / 255.0) + floor
         | 
| 84 | 
            +
                    return y_grad * d
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            class DoubleSwish(torch.nn.Module):
         | 
| 88 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 89 | 
            +
                    """Return double-swish activation function which is an approximation to Swish(Swish(x)),
         | 
| 90 | 
            +
                    that we approximate closely with x * sigmoid(x-1).
         | 
| 91 | 
            +
                    """
         | 
| 92 | 
            +
                    if torch.jit.is_scripting() or torch.jit.is_tracing():
         | 
| 93 | 
            +
                        return x * torch.sigmoid(x - 1.0)
         | 
| 94 | 
            +
                    return DoubleSwishFunction.apply(x)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
             | 
| 97 | 
            +
            class ActivationBalancerFunction(torch.autograd.Function):
         | 
| 98 | 
            +
                @staticmethod
         | 
| 99 | 
            +
                def forward(
         | 
| 100 | 
            +
                    ctx,
         | 
| 101 | 
            +
                    x: Tensor,
         | 
| 102 | 
            +
                    scale_factor: Tensor,
         | 
| 103 | 
            +
                    sign_factor: Optional[Tensor],
         | 
| 104 | 
            +
                    channel_dim: int,
         | 
| 105 | 
            +
                ) -> Tensor:
         | 
| 106 | 
            +
                    if channel_dim < 0:
         | 
| 107 | 
            +
                        channel_dim += x.ndim
         | 
| 108 | 
            +
                    ctx.channel_dim = channel_dim
         | 
| 109 | 
            +
                    xgt0 = x > 0
         | 
| 110 | 
            +
                    if sign_factor is None:
         | 
| 111 | 
            +
                        ctx.save_for_backward(xgt0, scale_factor)
         | 
| 112 | 
            +
                    else:
         | 
| 113 | 
            +
                        ctx.save_for_backward(xgt0, scale_factor, sign_factor)
         | 
| 114 | 
            +
                    return x
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                @staticmethod
         | 
| 117 | 
            +
                def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
         | 
| 118 | 
            +
                    if len(ctx.saved_tensors) == 3:
         | 
| 119 | 
            +
                        xgt0, scale_factor, sign_factor = ctx.saved_tensors
         | 
| 120 | 
            +
                        for _ in range(ctx.channel_dim, x_grad.ndim - 1):
         | 
| 121 | 
            +
                            scale_factor = scale_factor.unsqueeze(-1)
         | 
| 122 | 
            +
                            sign_factor = sign_factor.unsqueeze(-1)
         | 
| 123 | 
            +
                        factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
         | 
| 124 | 
            +
                    else:
         | 
| 125 | 
            +
                        xgt0, scale_factor = ctx.saved_tensors
         | 
| 126 | 
            +
                        for _ in range(ctx.channel_dim, x_grad.ndim - 1):
         | 
| 127 | 
            +
                            scale_factor = scale_factor.unsqueeze(-1)
         | 
| 128 | 
            +
                        factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
         | 
| 129 | 
            +
                    neg_delta_grad = x_grad.abs() * factor
         | 
| 130 | 
            +
                    return (
         | 
| 131 | 
            +
                        x_grad - neg_delta_grad,
         | 
| 132 | 
            +
                        None,
         | 
| 133 | 
            +
                        None,
         | 
| 134 | 
            +
                        None,
         | 
| 135 | 
            +
                    )
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            def _compute_scale_factor(
         | 
| 139 | 
            +
                x: Tensor,
         | 
| 140 | 
            +
                channel_dim: int,
         | 
| 141 | 
            +
                min_abs: float,
         | 
| 142 | 
            +
                max_abs: float,
         | 
| 143 | 
            +
                gain_factor: float,
         | 
| 144 | 
            +
                max_factor: float,
         | 
| 145 | 
            +
            ) -> Tensor:
         | 
| 146 | 
            +
                if channel_dim < 0:
         | 
| 147 | 
            +
                    channel_dim += x.ndim
         | 
| 148 | 
            +
                sum_dims = [d for d in range(x.ndim) if d != channel_dim]
         | 
| 149 | 
            +
                x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                if min_abs == 0.0:
         | 
| 152 | 
            +
                    below_threshold = 0.0
         | 
| 153 | 
            +
                else:
         | 
| 154 | 
            +
                    # below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
         | 
| 155 | 
            +
                    # x_abs)_mean , min_abs.
         | 
| 156 | 
            +
                    below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
         | 
| 157 | 
            +
                        min=0, max=max_factor
         | 
| 158 | 
            +
                    )
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
         | 
| 161 | 
            +
                    min=0, max=max_factor
         | 
| 162 | 
            +
                )
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                return below_threshold - above_threshold
         | 
| 165 | 
            +
             | 
| 166 | 
            +
             | 
| 167 | 
            +
            def _compute_sign_factor(
         | 
| 168 | 
            +
                x: Tensor,
         | 
| 169 | 
            +
                channel_dim: int,
         | 
| 170 | 
            +
                min_positive: float,
         | 
| 171 | 
            +
                max_positive: float,
         | 
| 172 | 
            +
                gain_factor: float,
         | 
| 173 | 
            +
                max_factor: float,
         | 
| 174 | 
            +
            ) -> Tensor:
         | 
| 175 | 
            +
                if channel_dim < 0:
         | 
| 176 | 
            +
                    channel_dim += x.ndim
         | 
| 177 | 
            +
                sum_dims = [d for d in range(x.ndim) if d != channel_dim]
         | 
| 178 | 
            +
                proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
         | 
| 179 | 
            +
                if min_positive == 0.0:
         | 
| 180 | 
            +
                    factor1 = 0.0
         | 
| 181 | 
            +
                else:
         | 
| 182 | 
            +
                    # 0 if proportion_positive >= min_positive, else can be
         | 
| 183 | 
            +
                    # as large as max_factor.
         | 
| 184 | 
            +
                    factor1 = (
         | 
| 185 | 
            +
                        (min_positive - proportion_positive) * (gain_factor / min_positive)
         | 
| 186 | 
            +
                    ).clamp_(min=0, max=max_factor)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                if max_positive == 1.0:
         | 
| 189 | 
            +
                    factor2 = 0.0
         | 
| 190 | 
            +
                else:
         | 
| 191 | 
            +
                    # 0 if self.proportion_positive <= max_positive, else can be
         | 
| 192 | 
            +
                    # as large as -max_factor.
         | 
| 193 | 
            +
                    factor2 = (
         | 
| 194 | 
            +
                        (proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
         | 
| 195 | 
            +
                    ).clamp_(min=0, max=max_factor)
         | 
| 196 | 
            +
                sign_factor = factor1 - factor2
         | 
| 197 | 
            +
                # require min_positive != 0 or max_positive != 1:
         | 
| 198 | 
            +
                assert not isinstance(sign_factor, float)
         | 
| 199 | 
            +
                return sign_factor
         | 
| 200 | 
            +
             | 
| 201 | 
            +
             | 
| 202 | 
            +
            class ActivationBalancer(torch.nn.Module):
         | 
| 203 | 
            +
                """
         | 
| 204 | 
            +
                Modifies the backpropped derivatives of a function to try to encourage, for
         | 
| 205 | 
            +
                each channel, that it is positive at least a proportion `threshold` of the
         | 
| 206 | 
            +
                time.  It does this by multiplying negative derivative values by up to
         | 
| 207 | 
            +
                (1+max_factor), and positive derivative values by up to (1-max_factor),
         | 
| 208 | 
            +
                interpolated from 1 at the threshold to those extremal values when none
         | 
| 209 | 
            +
                of the inputs are positive.
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                Args:
         | 
| 212 | 
            +
                       num_channels: the number of channels
         | 
| 213 | 
            +
                       channel_dim: the dimension/axis corresponding to the channel, e.g.
         | 
| 214 | 
            +
                           -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
         | 
| 215 | 
            +
                       min_positive: the minimum, per channel, of the proportion of the time
         | 
| 216 | 
            +
                           that (x > 0), below which we start to modify the derivatives.
         | 
| 217 | 
            +
                       max_positive: the maximum, per channel, of the proportion of the time
         | 
| 218 | 
            +
                           that (x > 0), above which we start to modify the derivatives.
         | 
| 219 | 
            +
                       max_factor: the maximum factor by which we modify the derivatives for
         | 
| 220 | 
            +
                          either the sign constraint or the magnitude constraint;
         | 
| 221 | 
            +
                          e.g. with max_factor=0.02, the the derivatives would be multiplied by
         | 
| 222 | 
            +
                          values in the range [0.98..1.02].
         | 
| 223 | 
            +
                       sign_gain_factor: determines the 'gain' with which we increase the
         | 
| 224 | 
            +
                          change in gradient once the constraints on min_positive and max_positive
         | 
| 225 | 
            +
                          are violated.
         | 
| 226 | 
            +
                       scale_gain_factor: determines the 'gain' with which we increase the
         | 
| 227 | 
            +
                          change in gradient once the constraints on min_abs and max_abs
         | 
| 228 | 
            +
                          are violated.
         | 
| 229 | 
            +
                       min_abs:  the minimum average-absolute-value difference from the mean
         | 
| 230 | 
            +
                           value per channel, which we allow, before we start to modify
         | 
| 231 | 
            +
                           the derivatives to prevent this.
         | 
| 232 | 
            +
                       max_abs:  the maximum average-absolute-value difference from the mean
         | 
| 233 | 
            +
                           value per channel, which we allow, before we start to modify
         | 
| 234 | 
            +
                           the derivatives to prevent this.
         | 
| 235 | 
            +
                      min_prob: determines the minimum probability with which we modify the
         | 
| 236 | 
            +
                         gradients for the {min,max}_positive and {min,max}_abs constraints,
         | 
| 237 | 
            +
                         on each forward().  This is done randomly to prevent all layers
         | 
| 238 | 
            +
                         from doing it at the same time.  Early in training we may use
         | 
| 239 | 
            +
                         higher probabilities than this; it will decay to this value.
         | 
| 240 | 
            +
                """
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                def __init__(
         | 
| 243 | 
            +
                    self,
         | 
| 244 | 
            +
                    num_channels: int,
         | 
| 245 | 
            +
                    channel_dim: int,
         | 
| 246 | 
            +
                    min_positive: float = 0.05,
         | 
| 247 | 
            +
                    max_positive: float = 0.95,
         | 
| 248 | 
            +
                    max_factor: float = 0.04,
         | 
| 249 | 
            +
                    sign_gain_factor: float = 0.01,
         | 
| 250 | 
            +
                    scale_gain_factor: float = 0.02,
         | 
| 251 | 
            +
                    min_abs: float = 0.2,
         | 
| 252 | 
            +
                    max_abs: float = 100.0,
         | 
| 253 | 
            +
                    min_prob: float = 0.1,
         | 
| 254 | 
            +
                ):
         | 
| 255 | 
            +
                    super(ActivationBalancer, self).__init__()
         | 
| 256 | 
            +
                    self.num_channels = num_channels
         | 
| 257 | 
            +
                    self.channel_dim = channel_dim
         | 
| 258 | 
            +
                    self.min_positive = min_positive
         | 
| 259 | 
            +
                    self.max_positive = max_positive
         | 
| 260 | 
            +
                    self.max_factor = max_factor
         | 
| 261 | 
            +
                    self.min_abs = min_abs
         | 
| 262 | 
            +
                    self.max_abs = max_abs
         | 
| 263 | 
            +
                    self.min_prob = min_prob
         | 
| 264 | 
            +
                    self.sign_gain_factor = sign_gain_factor
         | 
| 265 | 
            +
                    self.scale_gain_factor = scale_gain_factor
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    # count measures how many times the forward() function has been called.
         | 
| 268 | 
            +
                    # We occasionally sync this to a tensor called `count`, that exists to
         | 
| 269 | 
            +
                    # make sure it is synced to disk when we load and save the model.
         | 
| 270 | 
            +
                    self.cpu_count = 0
         | 
| 271 | 
            +
                    self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 274 | 
            +
                    if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
         | 
| 275 | 
            +
                        return _no_op(x)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    count = self.cpu_count
         | 
| 278 | 
            +
                    self.cpu_count += 1
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    if random.random() < 0.01:
         | 
| 281 | 
            +
                        # Occasionally sync self.cpu_count with self.count.
         | 
| 282 | 
            +
                        # count affects the decay of 'prob'.  don't do this on every iter,
         | 
| 283 | 
            +
                        # because syncing with the GPU is slow.
         | 
| 284 | 
            +
                        self.cpu_count = max(self.cpu_count, self.count.item())
         | 
| 285 | 
            +
                        self.count.fill_(self.cpu_count)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    # the prob of doing some work exponentially decreases from 0.5 till it hits
         | 
| 288 | 
            +
                    # a floor at min_prob (==0.1, by default)
         | 
| 289 | 
            +
                    prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    if random.random() < prob:
         | 
| 292 | 
            +
                        sign_gain_factor = 0.5
         | 
| 293 | 
            +
                        if self.min_positive != 0.0 or self.max_positive != 1.0:
         | 
| 294 | 
            +
                            sign_factor = _compute_sign_factor(
         | 
| 295 | 
            +
                                x,
         | 
| 296 | 
            +
                                self.channel_dim,
         | 
| 297 | 
            +
                                self.min_positive,
         | 
| 298 | 
            +
                                self.max_positive,
         | 
| 299 | 
            +
                                gain_factor=self.sign_gain_factor / prob,
         | 
| 300 | 
            +
                                max_factor=self.max_factor,
         | 
| 301 | 
            +
                            )
         | 
| 302 | 
            +
                        else:
         | 
| 303 | 
            +
                            sign_factor = None
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                        scale_factor = _compute_scale_factor(
         | 
| 306 | 
            +
                            x.detach(),
         | 
| 307 | 
            +
                            self.channel_dim,
         | 
| 308 | 
            +
                            min_abs=self.min_abs,
         | 
| 309 | 
            +
                            max_abs=self.max_abs,
         | 
| 310 | 
            +
                            gain_factor=self.scale_gain_factor / prob,
         | 
| 311 | 
            +
                            max_factor=self.max_factor,
         | 
| 312 | 
            +
                        )
         | 
| 313 | 
            +
                        return ActivationBalancerFunction.apply(
         | 
| 314 | 
            +
                            x,
         | 
| 315 | 
            +
                            scale_factor,
         | 
| 316 | 
            +
                            sign_factor,
         | 
| 317 | 
            +
                            self.channel_dim,
         | 
| 318 | 
            +
                        )
         | 
| 319 | 
            +
                    else:
         | 
| 320 | 
            +
                        return _no_op(x)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
             | 
| 323 | 
            +
            def BalancedDoubleSwish(
         | 
| 324 | 
            +
                d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
         | 
| 325 | 
            +
            ) -> nn.Sequential:
         | 
| 326 | 
            +
                """
         | 
| 327 | 
            +
                ActivationBalancer -> DoubleSwish
         | 
| 328 | 
            +
                """
         | 
| 329 | 
            +
                balancer = ActivationBalancer(
         | 
| 330 | 
            +
                    d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
         | 
| 331 | 
            +
                )
         | 
| 332 | 
            +
                return nn.Sequential(
         | 
| 333 | 
            +
                    balancer,
         | 
| 334 | 
            +
                    DoubleSwish(),
         | 
| 335 | 
            +
                )
         | 
    	
        AR/modules/transformer.py
    ADDED
    
    | @@ -0,0 +1,378 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
         | 
| 2 | 
            +
            import copy
         | 
| 3 | 
            +
            import numbers
         | 
| 4 | 
            +
            from functools import partial
         | 
| 5 | 
            +
            from typing import Any
         | 
| 6 | 
            +
            from typing import Callable
         | 
| 7 | 
            +
            from typing import List
         | 
| 8 | 
            +
            from typing import Optional
         | 
| 9 | 
            +
            from typing import Tuple
         | 
| 10 | 
            +
            from typing import Union
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import torch
         | 
| 13 | 
            +
            from AR.modules.activation import MultiheadAttention
         | 
| 14 | 
            +
            from AR.modules.scaling import BalancedDoubleSwish
         | 
| 15 | 
            +
            from torch import nn
         | 
| 16 | 
            +
            from torch import Tensor
         | 
| 17 | 
            +
            from torch.nn import functional as F
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            _shape_t = Union[int, List[int], torch.Size]
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            class LayerNorm(nn.Module):
         | 
| 23 | 
            +
                __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
         | 
| 24 | 
            +
                normalized_shape: Tuple[int, ...]
         | 
| 25 | 
            +
                eps: float
         | 
| 26 | 
            +
                elementwise_affine: bool
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def __init__(
         | 
| 29 | 
            +
                    self,
         | 
| 30 | 
            +
                    normalized_shape: _shape_t,
         | 
| 31 | 
            +
                    eps: float = 1e-5,
         | 
| 32 | 
            +
                    elementwise_affine: bool = True,
         | 
| 33 | 
            +
                    device=None,
         | 
| 34 | 
            +
                    dtype=None,
         | 
| 35 | 
            +
                ) -> None:
         | 
| 36 | 
            +
                    factory_kwargs = {"device": device, "dtype": dtype}
         | 
| 37 | 
            +
                    super(LayerNorm, self).__init__()
         | 
| 38 | 
            +
                    if isinstance(normalized_shape, numbers.Integral):
         | 
| 39 | 
            +
                        # mypy error: incompatible types in assignment
         | 
| 40 | 
            +
                        normalized_shape = (normalized_shape,)  # type: ignore[assignment]
         | 
| 41 | 
            +
                    self.normalized_shape = tuple(normalized_shape)  # type: ignore[arg-type]
         | 
| 42 | 
            +
                    self.eps = eps
         | 
| 43 | 
            +
                    self.elementwise_affine = elementwise_affine
         | 
| 44 | 
            +
                    if self.elementwise_affine:
         | 
| 45 | 
            +
                        self.weight = nn.Parameter(
         | 
| 46 | 
            +
                            torch.empty(self.normalized_shape, **factory_kwargs)
         | 
| 47 | 
            +
                        )
         | 
| 48 | 
            +
                        self.bias = nn.Parameter(
         | 
| 49 | 
            +
                            torch.empty(self.normalized_shape, **factory_kwargs)
         | 
| 50 | 
            +
                        )
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        self.register_parameter("weight", None)
         | 
| 53 | 
            +
                        self.register_parameter("bias", None)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    self.reset_parameters()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def reset_parameters(self) -> None:
         | 
| 58 | 
            +
                    if self.elementwise_affine:
         | 
| 59 | 
            +
                        nn.init.ones_(self.weight)
         | 
| 60 | 
            +
                        nn.init.zeros_(self.bias)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
         | 
| 63 | 
            +
                    if isinstance(input, tuple):
         | 
| 64 | 
            +
                        input, embedding = input
         | 
| 65 | 
            +
                        return (
         | 
| 66 | 
            +
                            F.layer_norm(
         | 
| 67 | 
            +
                                input,
         | 
| 68 | 
            +
                                self.normalized_shape,
         | 
| 69 | 
            +
                                self.weight,
         | 
| 70 | 
            +
                                self.bias,
         | 
| 71 | 
            +
                                self.eps,
         | 
| 72 | 
            +
                            ),
         | 
| 73 | 
            +
                            embedding,
         | 
| 74 | 
            +
                        )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    assert embedding is None
         | 
| 77 | 
            +
                    return F.layer_norm(
         | 
| 78 | 
            +
                        input, self.normalized_shape, self.weight, self.bias, self.eps
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                def extra_repr(self) -> str:
         | 
| 82 | 
            +
                    return (
         | 
| 83 | 
            +
                        "{normalized_shape}, eps={eps}, "
         | 
| 84 | 
            +
                        "elementwise_affine={elementwise_affine}".format(**self.__dict__)
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            class IdentityNorm(nn.Module):
         | 
| 89 | 
            +
                def __init__(
         | 
| 90 | 
            +
                    self,
         | 
| 91 | 
            +
                    d_model: int,
         | 
| 92 | 
            +
                    eps: float = 1e-5,
         | 
| 93 | 
            +
                    device=None,
         | 
| 94 | 
            +
                    dtype=None,
         | 
| 95 | 
            +
                ) -> None:
         | 
| 96 | 
            +
                    super(IdentityNorm, self).__init__()
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
         | 
| 99 | 
            +
                    if isinstance(input, tuple):
         | 
| 100 | 
            +
                        return input
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    assert embedding is None
         | 
| 103 | 
            +
                    return input
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            class TransformerEncoder(nn.Module):
         | 
| 107 | 
            +
                r"""TransformerEncoder is a stack of N encoder layers. Users can build the
         | 
| 108 | 
            +
                BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                Args:
         | 
| 111 | 
            +
                    encoder_layer: an instance of the TransformerEncoderLayer() class (required).
         | 
| 112 | 
            +
                    num_layers: the number of sub-encoder-layers in the encoder (required).
         | 
| 113 | 
            +
                    norm: the layer normalization component (optional).
         | 
| 114 | 
            +
                    enable_nested_tensor: if True, input will automatically convert to nested tensor
         | 
| 115 | 
            +
                        (and convert back on output). This will improve the overall performance of
         | 
| 116 | 
            +
                        TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                Examples::
         | 
| 119 | 
            +
                    >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
         | 
| 120 | 
            +
                    >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
         | 
| 121 | 
            +
                    >>> src = torch.rand(10, 32, 512)
         | 
| 122 | 
            +
                    >>> out = transformer_encoder(src)
         | 
| 123 | 
            +
                """
         | 
| 124 | 
            +
                __constants__ = ["norm"]
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def __init__(self, encoder_layer, num_layers, norm=None):
         | 
| 127 | 
            +
                    super(TransformerEncoder, self).__init__()
         | 
| 128 | 
            +
                    self.layers = _get_clones(encoder_layer, num_layers)
         | 
| 129 | 
            +
                    self.num_layers = num_layers
         | 
| 130 | 
            +
                    self.norm = norm
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def forward(
         | 
| 133 | 
            +
                    self,
         | 
| 134 | 
            +
                    src: Tensor,
         | 
| 135 | 
            +
                    mask: Optional[Tensor] = None,
         | 
| 136 | 
            +
                    src_key_padding_mask: Optional[Tensor] = None,
         | 
| 137 | 
            +
                    return_layer_states: bool = False,
         | 
| 138 | 
            +
                    cache=None,
         | 
| 139 | 
            +
                ) -> Tensor:
         | 
| 140 | 
            +
                    r"""Pass the input through the encoder layers in turn.
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    Args:
         | 
| 143 | 
            +
                        src: the sequence to the encoder (required).
         | 
| 144 | 
            +
                        mask: the mask for the src sequence (optional).
         | 
| 145 | 
            +
                        src_key_padding_mask: the mask for the src keys per batch (optional).
         | 
| 146 | 
            +
                        return_layer_states: return layers' state (optional).
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    Shape:
         | 
| 149 | 
            +
                        see the docs in Transformer class.
         | 
| 150 | 
            +
                    """
         | 
| 151 | 
            +
                    if return_layer_states:
         | 
| 152 | 
            +
                        layer_states = []  # layers' output
         | 
| 153 | 
            +
                        output = src
         | 
| 154 | 
            +
                        for mod in self.layers:
         | 
| 155 | 
            +
                            output = mod(
         | 
| 156 | 
            +
                                output,
         | 
| 157 | 
            +
                                src_mask=mask,
         | 
| 158 | 
            +
                                src_key_padding_mask=src_key_padding_mask,
         | 
| 159 | 
            +
                                cache=cache,
         | 
| 160 | 
            +
                            )
         | 
| 161 | 
            +
                            layer_states.append(output[0])
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                        if self.norm is not None:
         | 
| 164 | 
            +
                            output = self.norm(output)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                        return layer_states, output
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    output = src
         | 
| 169 | 
            +
                    for mod in self.layers:
         | 
| 170 | 
            +
                        output = mod(
         | 
| 171 | 
            +
                            output,
         | 
| 172 | 
            +
                            src_mask=mask,
         | 
| 173 | 
            +
                            src_key_padding_mask=src_key_padding_mask,
         | 
| 174 | 
            +
                            cache=cache,
         | 
| 175 | 
            +
                        )
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    if self.norm is not None:
         | 
| 178 | 
            +
                        output = self.norm(output)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    return output
         | 
| 181 | 
            +
             | 
| 182 | 
            +
             | 
| 183 | 
            +
            class TransformerEncoderLayer(nn.Module):
         | 
| 184 | 
            +
                __constants__ = ["batch_first", "norm_first"]
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def __init__(
         | 
| 187 | 
            +
                    self,
         | 
| 188 | 
            +
                    d_model: int,
         | 
| 189 | 
            +
                    nhead: int,
         | 
| 190 | 
            +
                    dim_feedforward: int = 2048,
         | 
| 191 | 
            +
                    dropout: float = 0.1,
         | 
| 192 | 
            +
                    activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
         | 
| 193 | 
            +
                    batch_first: bool = False,
         | 
| 194 | 
            +
                    norm_first: bool = False,
         | 
| 195 | 
            +
                    device=None,
         | 
| 196 | 
            +
                    dtype=None,
         | 
| 197 | 
            +
                    linear1_self_attention_cls: nn.Module = nn.Linear,
         | 
| 198 | 
            +
                    linear2_self_attention_cls: nn.Module = nn.Linear,
         | 
| 199 | 
            +
                    linear1_feedforward_cls: nn.Module = nn.Linear,
         | 
| 200 | 
            +
                    linear2_feedforward_cls: nn.Module = nn.Linear,
         | 
| 201 | 
            +
                    layer_norm_cls: nn.Module = LayerNorm,
         | 
| 202 | 
            +
                    layer_norm_eps: float = 1e-5,
         | 
| 203 | 
            +
                    adaptive_layer_norm=False,
         | 
| 204 | 
            +
                ) -> None:
         | 
| 205 | 
            +
                    factory_kwargs = {"device": device, "dtype": dtype}
         | 
| 206 | 
            +
                    super(TransformerEncoderLayer, self).__init__()
         | 
| 207 | 
            +
                    # print(233333333333,d_model,nhead)
         | 
| 208 | 
            +
                    # import os
         | 
| 209 | 
            +
                    # os._exit(2333333)
         | 
| 210 | 
            +
                    self.self_attn = MultiheadAttention(
         | 
| 211 | 
            +
                        d_model,  # 512 16
         | 
| 212 | 
            +
                        nhead,
         | 
| 213 | 
            +
                        dropout=dropout,
         | 
| 214 | 
            +
                        batch_first=batch_first,
         | 
| 215 | 
            +
                        linear1_cls=linear1_self_attention_cls,
         | 
| 216 | 
            +
                        linear2_cls=linear2_self_attention_cls,
         | 
| 217 | 
            +
                        **factory_kwargs,
         | 
| 218 | 
            +
                    )
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    # Implementation of Feedforward model
         | 
| 221 | 
            +
                    self.linear1 = linear1_feedforward_cls(
         | 
| 222 | 
            +
                        d_model, dim_feedforward, **factory_kwargs
         | 
| 223 | 
            +
                    )
         | 
| 224 | 
            +
                    self.dropout = nn.Dropout(dropout)
         | 
| 225 | 
            +
                    self.linear2 = linear2_feedforward_cls(
         | 
| 226 | 
            +
                        dim_feedforward, d_model, **factory_kwargs
         | 
| 227 | 
            +
                    )
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    self.norm_first = norm_first
         | 
| 230 | 
            +
                    self.dropout1 = nn.Dropout(dropout)
         | 
| 231 | 
            +
                    self.dropout2 = nn.Dropout(dropout)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    # Legacy string support for activation function.
         | 
| 234 | 
            +
                    if isinstance(activation, str):
         | 
| 235 | 
            +
                        activation = _get_activation_fn(activation)
         | 
| 236 | 
            +
                    elif isinstance(activation, partial):
         | 
| 237 | 
            +
                        activation = activation(d_model)
         | 
| 238 | 
            +
                    elif activation == BalancedDoubleSwish:
         | 
| 239 | 
            +
                        activation = BalancedDoubleSwish(d_model)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    # # We can't test self.activation in forward() in TorchScript,
         | 
| 242 | 
            +
                    # # so stash some information about it instead.
         | 
| 243 | 
            +
                    # if activation is F.relu or isinstance(activation, torch.nn.ReLU):
         | 
| 244 | 
            +
                    #     self.activation_relu_or_gelu = 1
         | 
| 245 | 
            +
                    # elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
         | 
| 246 | 
            +
                    #     self.activation_relu_or_gelu = 2
         | 
| 247 | 
            +
                    # else:
         | 
| 248 | 
            +
                    #     self.activation_relu_or_gelu = 0
         | 
| 249 | 
            +
                    self.activation = activation
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
         | 
| 252 | 
            +
                    if layer_norm_cls == IdentityNorm:
         | 
| 253 | 
            +
                        norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
         | 
| 254 | 
            +
                    else:
         | 
| 255 | 
            +
                        norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    if adaptive_layer_norm:
         | 
| 258 | 
            +
                        self.norm1 = AdaptiveLayerNorm(d_model, norm1)
         | 
| 259 | 
            +
                        self.norm2 = AdaptiveLayerNorm(d_model, norm2)
         | 
| 260 | 
            +
                    else:
         | 
| 261 | 
            +
                        self.norm1 = norm1
         | 
| 262 | 
            +
                        self.norm2 = norm2
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                def __setstate__(self, state):
         | 
| 265 | 
            +
                    super(TransformerEncoderLayer, self).__setstate__(state)
         | 
| 266 | 
            +
                    if not hasattr(self, "activation"):
         | 
| 267 | 
            +
                        self.activation = F.relu
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                def forward(
         | 
| 270 | 
            +
                    self,
         | 
| 271 | 
            +
                    src: Tensor,
         | 
| 272 | 
            +
                    src_mask: Optional[Tensor] = None,
         | 
| 273 | 
            +
                    src_key_padding_mask: Optional[Tensor] = None,
         | 
| 274 | 
            +
                    cache=None,
         | 
| 275 | 
            +
                ) -> Tensor:
         | 
| 276 | 
            +
                    r"""Pass the input through the encoder layer.
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    Args:
         | 
| 279 | 
            +
                        src: the sequence to the encoder layer (required).
         | 
| 280 | 
            +
                        src_mask: the mask for the src sequence (optional).
         | 
| 281 | 
            +
                        src_key_padding_mask: the mask for the src keys per batch (optional).
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    Shape:
         | 
| 284 | 
            +
                        see the docs in Transformer class.
         | 
| 285 | 
            +
                    """
         | 
| 286 | 
            +
                    x, stage_embedding = src, None
         | 
| 287 | 
            +
                    is_src_tuple = False
         | 
| 288 | 
            +
                    if isinstance(src, tuple):
         | 
| 289 | 
            +
                        x, stage_embedding = src
         | 
| 290 | 
            +
                        is_src_tuple = True
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                    if src_key_padding_mask is not None:
         | 
| 293 | 
            +
                        _skpm_dtype = src_key_padding_mask.dtype
         | 
| 294 | 
            +
                        if _skpm_dtype != torch.bool and not torch.is_floating_point(
         | 
| 295 | 
            +
                            src_key_padding_mask
         | 
| 296 | 
            +
                        ):
         | 
| 297 | 
            +
                            raise AssertionError(
         | 
| 298 | 
            +
                                "only bool and floating types of key_padding_mask are supported"
         | 
| 299 | 
            +
                            )
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    if self.norm_first:
         | 
| 302 | 
            +
                        x = x + self._sa_block(
         | 
| 303 | 
            +
                            self.norm1(x, stage_embedding),
         | 
| 304 | 
            +
                            src_mask,
         | 
| 305 | 
            +
                            src_key_padding_mask,
         | 
| 306 | 
            +
                            cache=cache,
         | 
| 307 | 
            +
                        )
         | 
| 308 | 
            +
                        x = x + self._ff_block(self.norm2(x, stage_embedding))
         | 
| 309 | 
            +
                    else:
         | 
| 310 | 
            +
                        x = self.norm1(
         | 
| 311 | 
            +
                            x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
         | 
| 312 | 
            +
                            stage_embedding,
         | 
| 313 | 
            +
                        )
         | 
| 314 | 
            +
                        x = self.norm2(x + self._ff_block(x), stage_embedding)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    if is_src_tuple:
         | 
| 317 | 
            +
                        return (x, stage_embedding)
         | 
| 318 | 
            +
                    return x
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                # self-attention block
         | 
| 321 | 
            +
                def _sa_block(
         | 
| 322 | 
            +
                    self,
         | 
| 323 | 
            +
                    x: Tensor,
         | 
| 324 | 
            +
                    attn_mask: Optional[Tensor],
         | 
| 325 | 
            +
                    key_padding_mask: Optional[Tensor],
         | 
| 326 | 
            +
                    cache=None,
         | 
| 327 | 
            +
                ) -> Tensor:
         | 
| 328 | 
            +
                    # print(x.shape,attn_mask.shape,key_padding_mask)
         | 
| 329 | 
            +
                    # torch.Size([1, 188, 512]) torch.Size([188, 188]) None
         | 
| 330 | 
            +
                    # import os
         | 
| 331 | 
            +
                    # os._exit(23333)
         | 
| 332 | 
            +
                    x = self.self_attn(
         | 
| 333 | 
            +
                        x,
         | 
| 334 | 
            +
                        x,
         | 
| 335 | 
            +
                        x,
         | 
| 336 | 
            +
                        attn_mask=attn_mask,
         | 
| 337 | 
            +
                        key_padding_mask=key_padding_mask,
         | 
| 338 | 
            +
                        need_weights=False,
         | 
| 339 | 
            +
                        cache=cache,
         | 
| 340 | 
            +
                    )[0]
         | 
| 341 | 
            +
                    return self.dropout1(x)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                # feed forward block
         | 
| 344 | 
            +
                def _ff_block(self, x: Tensor) -> Tensor:
         | 
| 345 | 
            +
                    x = self.linear2(self.dropout(self.activation(self.linear1(x))))
         | 
| 346 | 
            +
                    return self.dropout2(x)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
             | 
| 349 | 
            +
            class AdaptiveLayerNorm(nn.Module):
         | 
| 350 | 
            +
                r"""Adaptive Layer Normalization"""
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                def __init__(self, d_model, norm) -> None:
         | 
| 353 | 
            +
                    super(AdaptiveLayerNorm, self).__init__()
         | 
| 354 | 
            +
                    self.project_layer = nn.Linear(d_model, 2 * d_model)
         | 
| 355 | 
            +
                    self.norm = norm
         | 
| 356 | 
            +
                    self.d_model = d_model
         | 
| 357 | 
            +
                    self.eps = self.norm.eps
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
         | 
| 360 | 
            +
                    if isinstance(input, tuple):
         | 
| 361 | 
            +
                        input, embedding = input
         | 
| 362 | 
            +
                        weight, bias = torch.split(
         | 
| 363 | 
            +
                            self.project_layer(embedding),
         | 
| 364 | 
            +
                            split_size_or_sections=self.d_model,
         | 
| 365 | 
            +
                            dim=-1,
         | 
| 366 | 
            +
                        )
         | 
| 367 | 
            +
                        return (weight * self.norm(input) + bias, embedding)
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    weight, bias = torch.split(
         | 
| 370 | 
            +
                        self.project_layer(embedding),
         | 
| 371 | 
            +
                        split_size_or_sections=self.d_model,
         | 
| 372 | 
            +
                        dim=-1,
         | 
| 373 | 
            +
                    )
         | 
| 374 | 
            +
                    return weight * self.norm(input) + bias
         | 
| 375 | 
            +
             | 
| 376 | 
            +
             | 
| 377 | 
            +
            def _get_clones(module, N):
         | 
| 378 | 
            +
                return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
         | 
    	
        AR/modules/transformer_onnx.py
    ADDED
    
    | @@ -0,0 +1,292 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
         | 
| 2 | 
            +
            import copy
         | 
| 3 | 
            +
            import numbers
         | 
| 4 | 
            +
            from functools import partial
         | 
| 5 | 
            +
            from typing import Any
         | 
| 6 | 
            +
            from typing import Callable
         | 
| 7 | 
            +
            from typing import List
         | 
| 8 | 
            +
            from typing import Optional
         | 
| 9 | 
            +
            from typing import Tuple
         | 
| 10 | 
            +
            from typing import Union
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import torch
         | 
| 13 | 
            +
            from AR.modules.activation_onnx import MultiheadAttention
         | 
| 14 | 
            +
            from AR.modules.scaling import BalancedDoubleSwish
         | 
| 15 | 
            +
            from torch import nn
         | 
| 16 | 
            +
            from torch import Tensor
         | 
| 17 | 
            +
            from torch.nn import functional as F
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            _shape_t = Union[int, List[int], torch.Size]
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            class LayerNorm(nn.Module):
         | 
| 23 | 
            +
                __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
         | 
| 24 | 
            +
                normalized_shape: Tuple[int, ...]
         | 
| 25 | 
            +
                eps: float
         | 
| 26 | 
            +
                elementwise_affine: bool
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def __init__(
         | 
| 29 | 
            +
                    self,
         | 
| 30 | 
            +
                    normalized_shape: _shape_t,
         | 
| 31 | 
            +
                    eps: float = 1e-5,
         | 
| 32 | 
            +
                    elementwise_affine: bool = True,
         | 
| 33 | 
            +
                    device=None,
         | 
| 34 | 
            +
                    dtype=None,
         | 
| 35 | 
            +
                ) -> None:
         | 
| 36 | 
            +
                    factory_kwargs = {"device": device, "dtype": dtype}
         | 
| 37 | 
            +
                    super(LayerNorm, self).__init__()
         | 
| 38 | 
            +
                    if isinstance(normalized_shape, numbers.Integral):
         | 
| 39 | 
            +
                        # mypy error: incompatible types in assignment
         | 
| 40 | 
            +
                        normalized_shape = (normalized_shape,)  # type: ignore[assignment]
         | 
| 41 | 
            +
                    self.normalized_shape = tuple(normalized_shape)  # type: ignore[arg-type]
         | 
| 42 | 
            +
                    self.eps = eps
         | 
| 43 | 
            +
                    self.elementwise_affine = elementwise_affine
         | 
| 44 | 
            +
                    if self.elementwise_affine:
         | 
| 45 | 
            +
                        self.weight = nn.Parameter(
         | 
| 46 | 
            +
                            torch.empty(self.normalized_shape, **factory_kwargs)
         | 
| 47 | 
            +
                        )
         | 
| 48 | 
            +
                        self.bias = nn.Parameter(
         | 
| 49 | 
            +
                            torch.empty(self.normalized_shape, **factory_kwargs)
         | 
| 50 | 
            +
                        )
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        self.register_parameter("weight", None)
         | 
| 53 | 
            +
                        self.register_parameter("bias", None)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    self.reset_parameters()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def reset_parameters(self) -> None:
         | 
| 58 | 
            +
                    if self.elementwise_affine:
         | 
| 59 | 
            +
                        nn.init.ones_(self.weight)
         | 
| 60 | 
            +
                        nn.init.zeros_(self.bias)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
         | 
| 63 | 
            +
                    if isinstance(input, tuple):
         | 
| 64 | 
            +
                        input, embedding = input
         | 
| 65 | 
            +
                        return (
         | 
| 66 | 
            +
                            F.layer_norm(
         | 
| 67 | 
            +
                                input,
         | 
| 68 | 
            +
                                self.normalized_shape,
         | 
| 69 | 
            +
                                self.weight,
         | 
| 70 | 
            +
                                self.bias,
         | 
| 71 | 
            +
                                self.eps,
         | 
| 72 | 
            +
                            ),
         | 
| 73 | 
            +
                            embedding,
         | 
| 74 | 
            +
                        )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    assert embedding is None
         | 
| 77 | 
            +
                    return F.layer_norm(
         | 
| 78 | 
            +
                        input, self.normalized_shape, self.weight, self.bias, self.eps
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                def extra_repr(self) -> str:
         | 
| 82 | 
            +
                    return (
         | 
| 83 | 
            +
                        "{normalized_shape}, eps={eps}, "
         | 
| 84 | 
            +
                        "elementwise_affine={elementwise_affine}".format(**self.__dict__)
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            class IdentityNorm(nn.Module):
         | 
| 89 | 
            +
                def __init__(
         | 
| 90 | 
            +
                    self,
         | 
| 91 | 
            +
                    d_model: int,
         | 
| 92 | 
            +
                    eps: float = 1e-5,
         | 
| 93 | 
            +
                    device=None,
         | 
| 94 | 
            +
                    dtype=None,
         | 
| 95 | 
            +
                ) -> None:
         | 
| 96 | 
            +
                    super(IdentityNorm, self).__init__()
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
         | 
| 99 | 
            +
                    if isinstance(input, tuple):
         | 
| 100 | 
            +
                        return input
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    assert embedding is None
         | 
| 103 | 
            +
                    return input
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            class TransformerEncoder(nn.Module):
         | 
| 107 | 
            +
                r"""TransformerEncoder is a stack of N encoder layers. Users can build the
         | 
| 108 | 
            +
                BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                Args:
         | 
| 111 | 
            +
                    encoder_layer: an instance of the TransformerEncoderLayer() class (required).
         | 
| 112 | 
            +
                    num_layers: the number of sub-encoder-layers in the encoder (required).
         | 
| 113 | 
            +
                    norm: the layer normalization component (optional).
         | 
| 114 | 
            +
                    enable_nested_tensor: if True, input will automatically convert to nested tensor
         | 
| 115 | 
            +
                        (and convert back on output). This will improve the overall performance of
         | 
| 116 | 
            +
                        TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                Examples::
         | 
| 119 | 
            +
                    >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
         | 
| 120 | 
            +
                    >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
         | 
| 121 | 
            +
                    >>> src = torch.rand(10, 32, 512)
         | 
| 122 | 
            +
                    >>> out = transformer_encoder(src)
         | 
| 123 | 
            +
                """
         | 
| 124 | 
            +
                __constants__ = ["norm"]
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def __init__(self, encoder_layer, num_layers, norm=None):
         | 
| 127 | 
            +
                    super(TransformerEncoder, self).__init__()
         | 
| 128 | 
            +
                    self.layers = _get_clones(encoder_layer, num_layers)
         | 
| 129 | 
            +
                    self.num_layers = num_layers
         | 
| 130 | 
            +
                    self.norm = norm
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def forward(
         | 
| 133 | 
            +
                    self,
         | 
| 134 | 
            +
                    src: Tensor,
         | 
| 135 | 
            +
                    mask: Optional[Tensor] = None,
         | 
| 136 | 
            +
                    src_key_padding_mask: Optional[Tensor] = None,
         | 
| 137 | 
            +
                    return_layer_states: bool = False,
         | 
| 138 | 
            +
                    cache=None,
         | 
| 139 | 
            +
                ) -> Tensor:
         | 
| 140 | 
            +
                    output = src
         | 
| 141 | 
            +
                    for mod in self.layers:
         | 
| 142 | 
            +
                        output = mod(
         | 
| 143 | 
            +
                            output,
         | 
| 144 | 
            +
                            src_mask=mask,
         | 
| 145 | 
            +
                            src_key_padding_mask=src_key_padding_mask,
         | 
| 146 | 
            +
                            cache=cache,
         | 
| 147 | 
            +
                        )
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    if self.norm is not None:
         | 
| 150 | 
            +
                        output = self.norm(output)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    return output
         | 
| 153 | 
            +
             | 
| 154 | 
            +
             | 
| 155 | 
            +
            class TransformerEncoderLayer(nn.Module):
         | 
| 156 | 
            +
                __constants__ = ["batch_first", "norm_first"]
         | 
| 157 | 
            +
                def __init__(
         | 
| 158 | 
            +
                    self,
         | 
| 159 | 
            +
                    d_model: int,
         | 
| 160 | 
            +
                    nhead: int,
         | 
| 161 | 
            +
                    dim_feedforward: int = 2048,
         | 
| 162 | 
            +
                    dropout: float = 0.1,
         | 
| 163 | 
            +
                    activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
         | 
| 164 | 
            +
                    batch_first: bool = False,
         | 
| 165 | 
            +
                    norm_first: bool = False,
         | 
| 166 | 
            +
                    device=None,
         | 
| 167 | 
            +
                    dtype=None,
         | 
| 168 | 
            +
                    linear1_self_attention_cls: nn.Module = nn.Linear,
         | 
| 169 | 
            +
                    linear2_self_attention_cls: nn.Module = nn.Linear,
         | 
| 170 | 
            +
                    linear1_feedforward_cls: nn.Module = nn.Linear,
         | 
| 171 | 
            +
                    linear2_feedforward_cls: nn.Module = nn.Linear,
         | 
| 172 | 
            +
                    layer_norm_cls: nn.Module = LayerNorm,
         | 
| 173 | 
            +
                    layer_norm_eps: float = 1e-5,
         | 
| 174 | 
            +
                    adaptive_layer_norm=False,
         | 
| 175 | 
            +
                ) -> None:
         | 
| 176 | 
            +
                    factory_kwargs = {"device": device, "dtype": dtype}
         | 
| 177 | 
            +
                    super(TransformerEncoderLayer, self).__init__()
         | 
| 178 | 
            +
                    self.self_attn = MultiheadAttention(
         | 
| 179 | 
            +
                        d_model,  # 512 16
         | 
| 180 | 
            +
                        nhead,
         | 
| 181 | 
            +
                        dropout=dropout,
         | 
| 182 | 
            +
                        batch_first=batch_first,
         | 
| 183 | 
            +
                        linear1_cls=linear1_self_attention_cls,
         | 
| 184 | 
            +
                        linear2_cls=linear2_self_attention_cls,
         | 
| 185 | 
            +
                        **factory_kwargs,
         | 
| 186 | 
            +
                    )
         | 
| 187 | 
            +
                    self.linear1 = linear1_feedforward_cls(
         | 
| 188 | 
            +
                        d_model, dim_feedforward, **factory_kwargs
         | 
| 189 | 
            +
                    )
         | 
| 190 | 
            +
                    self.dropout = nn.Dropout(dropout)
         | 
| 191 | 
            +
                    self.linear2 = linear2_feedforward_cls(
         | 
| 192 | 
            +
                        dim_feedforward, d_model, **factory_kwargs
         | 
| 193 | 
            +
                    )
         | 
| 194 | 
            +
                    self.norm_first = norm_first
         | 
| 195 | 
            +
                    self.dropout1 = nn.Dropout(dropout)
         | 
| 196 | 
            +
                    self.dropout2 = nn.Dropout(dropout)
         | 
| 197 | 
            +
                    if isinstance(activation, str):
         | 
| 198 | 
            +
                        activation = _get_activation_fn(activation)
         | 
| 199 | 
            +
                    elif isinstance(activation, partial):
         | 
| 200 | 
            +
                        activation = activation(d_model)
         | 
| 201 | 
            +
                    elif activation == BalancedDoubleSwish:
         | 
| 202 | 
            +
                        activation = BalancedDoubleSwish(d_model)
         | 
| 203 | 
            +
                    self.activation = activation
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
         | 
| 206 | 
            +
                    if layer_norm_cls == IdentityNorm:
         | 
| 207 | 
            +
                        norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
         | 
| 208 | 
            +
                    else:
         | 
| 209 | 
            +
                        norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if adaptive_layer_norm:
         | 
| 212 | 
            +
                        self.norm1 = AdaptiveLayerNorm(d_model, norm1)
         | 
| 213 | 
            +
                        self.norm2 = AdaptiveLayerNorm(d_model, norm2)
         | 
| 214 | 
            +
                    else:
         | 
| 215 | 
            +
                        self.norm1 = norm1
         | 
| 216 | 
            +
                        self.norm2 = norm2
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def __setstate__(self, state):
         | 
| 219 | 
            +
                    super(TransformerEncoderLayer, self).__setstate__(state)
         | 
| 220 | 
            +
                    if not hasattr(self, "activation"):
         | 
| 221 | 
            +
                        self.activation = F.relu
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                def forward(
         | 
| 224 | 
            +
                    self,
         | 
| 225 | 
            +
                    src: Tensor,
         | 
| 226 | 
            +
                    src_mask: Optional[Tensor] = None,
         | 
| 227 | 
            +
                    src_key_padding_mask: Optional[Tensor] = None,
         | 
| 228 | 
            +
                    cache=None,
         | 
| 229 | 
            +
                ) -> Tensor:
         | 
| 230 | 
            +
                    x = src
         | 
| 231 | 
            +
                    stage_embedding = None
         | 
| 232 | 
            +
                    x = self.norm1(
         | 
| 233 | 
            +
                        x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
         | 
| 234 | 
            +
                        stage_embedding,
         | 
| 235 | 
            +
                    )
         | 
| 236 | 
            +
                    x = self.norm2(x + self._ff_block(x), stage_embedding)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    return x
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                def _sa_block(
         | 
| 241 | 
            +
                    self,
         | 
| 242 | 
            +
                    x: Tensor,
         | 
| 243 | 
            +
                    attn_mask: Optional[Tensor],
         | 
| 244 | 
            +
                    key_padding_mask: Optional[Tensor],
         | 
| 245 | 
            +
                    cache=None,
         | 
| 246 | 
            +
                ) -> Tensor:
         | 
| 247 | 
            +
                    x = self.self_attn(
         | 
| 248 | 
            +
                        x,
         | 
| 249 | 
            +
                        x,
         | 
| 250 | 
            +
                        x,
         | 
| 251 | 
            +
                        attn_mask=attn_mask,
         | 
| 252 | 
            +
                        key_padding_mask=key_padding_mask,
         | 
| 253 | 
            +
                        need_weights=False,
         | 
| 254 | 
            +
                        cache=cache,
         | 
| 255 | 
            +
                    )
         | 
| 256 | 
            +
                    return self.dropout1(x)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def _ff_block(self, x: Tensor) -> Tensor:
         | 
| 259 | 
            +
                    x = self.linear2(self.dropout(self.activation(self.linear1(x))))
         | 
| 260 | 
            +
                    return self.dropout2(x)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
             | 
| 263 | 
            +
            class AdaptiveLayerNorm(nn.Module):
         | 
| 264 | 
            +
                r"""Adaptive Layer Normalization"""
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                def __init__(self, d_model, norm) -> None:
         | 
| 267 | 
            +
                    super(AdaptiveLayerNorm, self).__init__()
         | 
| 268 | 
            +
                    self.project_layer = nn.Linear(d_model, 2 * d_model)
         | 
| 269 | 
            +
                    self.norm = norm
         | 
| 270 | 
            +
                    self.d_model = d_model
         | 
| 271 | 
            +
                    self.eps = self.norm.eps
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
         | 
| 274 | 
            +
                    if isinstance(input, tuple):
         | 
| 275 | 
            +
                        input, embedding = input
         | 
| 276 | 
            +
                        weight, bias = torch.split(
         | 
| 277 | 
            +
                            self.project_layer(embedding),
         | 
| 278 | 
            +
                            split_size_or_sections=self.d_model,
         | 
| 279 | 
            +
                            dim=-1,
         | 
| 280 | 
            +
                        )
         | 
| 281 | 
            +
                        return (weight * self.norm(input) + bias, embedding)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    weight, bias = torch.split(
         | 
| 284 | 
            +
                        self.project_layer(embedding),
         | 
| 285 | 
            +
                        split_size_or_sections=self.d_model,
         | 
| 286 | 
            +
                        dim=-1,
         | 
| 287 | 
            +
                    )
         | 
| 288 | 
            +
                    return weight * self.norm(input) + bias
         | 
| 289 | 
            +
             | 
| 290 | 
            +
             | 
| 291 | 
            +
            def _get_clones(module, N):
         | 
| 292 | 
            +
                return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
         | 
    	
        AR/text_processing/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        AR/text_processing/phonemizer.py
    ADDED
    
    | @@ -0,0 +1,79 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/phonemizer.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            import itertools
         | 
| 4 | 
            +
            import re
         | 
| 5 | 
            +
            from typing import Dict
         | 
| 6 | 
            +
            from typing import List
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import regex
         | 
| 9 | 
            +
            from gruut import sentences
         | 
| 10 | 
            +
            from gruut.const import Sentence
         | 
| 11 | 
            +
            from gruut.const import Word
         | 
| 12 | 
            +
            from AR.text_processing.symbols import SYMBOL_TO_ID
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            class GruutPhonemizer:
         | 
| 16 | 
            +
                def __init__(self, language: str):
         | 
| 17 | 
            +
                    self._phonemizer = sentences
         | 
| 18 | 
            +
                    self.lang = language
         | 
| 19 | 
            +
                    self.symbol_to_id = SYMBOL_TO_ID
         | 
| 20 | 
            +
                    self._special_cases_dict: Dict[str] = {
         | 
| 21 | 
            +
                        r"\.\.\.": "... ",
         | 
| 22 | 
            +
                        ";": "; ",
         | 
| 23 | 
            +
                        ":": ": ",
         | 
| 24 | 
            +
                        ",": ", ",
         | 
| 25 | 
            +
                        r"\.": ". ",
         | 
| 26 | 
            +
                        "!": "! ",
         | 
| 27 | 
            +
                        r"\?": "? ",
         | 
| 28 | 
            +
                        "—": "—",
         | 
| 29 | 
            +
                        "…": "… ",
         | 
| 30 | 
            +
                        "«": "«",
         | 
| 31 | 
            +
                        "»": "»",
         | 
| 32 | 
            +
                    }
         | 
| 33 | 
            +
                    self._punctuation_regexp: str = (
         | 
| 34 | 
            +
                        rf"([{''.join(self._special_cases_dict.keys())}])"
         | 
| 35 | 
            +
                    )
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def _normalize_punctuation(self, text: str) -> str:
         | 
| 38 | 
            +
                    text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
         | 
| 39 | 
            +
                    text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
         | 
| 40 | 
            +
                    text = regex.sub(r"\pZ+", r" ", text)
         | 
| 41 | 
            +
                    return text.strip()
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def _convert_punctuation(self, word: Word) -> str:
         | 
| 44 | 
            +
                    if not word.phonemes:
         | 
| 45 | 
            +
                        return ""
         | 
| 46 | 
            +
                    if word.phonemes[0] in ["‖", "|"]:
         | 
| 47 | 
            +
                        return word.text.strip()
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    phonemes = "".join(word.phonemes)
         | 
| 50 | 
            +
                    # remove modifier characters ˈˌː with regex
         | 
| 51 | 
            +
                    phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
         | 
| 52 | 
            +
                    return phonemes.strip()
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def phonemize(self, text: str, espeak: bool = False) -> str:
         | 
| 55 | 
            +
                    text_to_phonemize: str = self._normalize_punctuation(text)
         | 
| 56 | 
            +
                    sents: List[Sentence] = [
         | 
| 57 | 
            +
                        sent
         | 
| 58 | 
            +
                        for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)
         | 
| 59 | 
            +
                    ]
         | 
| 60 | 
            +
                    words: List[str] = [
         | 
| 61 | 
            +
                        self._convert_punctuation(word) for word in itertools.chain(*sents)
         | 
| 62 | 
            +
                    ]
         | 
| 63 | 
            +
                    return " ".join(words)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                def transform(self, phonemes):
         | 
| 66 | 
            +
                    # convert phonemes to ids
         | 
| 67 | 
            +
                    # dictionary is in symbols.py
         | 
| 68 | 
            +
                    return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            if __name__ == "__main__":
         | 
| 72 | 
            +
                phonemizer = GruutPhonemizer("en-us")
         | 
| 73 | 
            +
                # text -> IPA
         | 
| 74 | 
            +
                phonemes = phonemizer.phonemize("Hello, wor-ld ?")
         | 
| 75 | 
            +
                print("phonemes:", phonemes)
         | 
| 76 | 
            +
                print("len(phonemes):", len(phonemes))
         | 
| 77 | 
            +
                phoneme_ids = phonemizer.transform(phonemes)
         | 
| 78 | 
            +
                print("phoneme_ids:", phoneme_ids)
         | 
| 79 | 
            +
                print("len(phoneme_ids):", len(phoneme_ids))
         | 
    	
        AR/text_processing/symbols.py
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/symbols.py
         | 
| 2 | 
            +
            # reference: https://github.com/lifeiteng/vall-e
         | 
| 3 | 
            +
            PAD = "_"
         | 
| 4 | 
            +
            PUNCTUATION = ';:,.!?¡¿—…"«»“” '
         | 
| 5 | 
            +
            LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
         | 
| 6 | 
            +
            IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
         | 
| 7 | 
            +
            SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
         | 
| 8 | 
            +
            SPACE_ID = SYMBOLS.index(" ")
         | 
| 9 | 
            +
            SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
         | 
| 10 | 
            +
            ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
         | 
    	
        AR/utils/__init__.py
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import re
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            def str2bool(str):
         | 
| 5 | 
            +
                return True if str.lower() == 'true' else False
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            def get_newest_ckpt(string_list):
         | 
| 9 | 
            +
                # 定义一个正则表达式模式,用于匹配字符串中的数字
         | 
| 10 | 
            +
                pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                # 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
         | 
| 13 | 
            +
                extracted_info = []
         | 
| 14 | 
            +
                for string in string_list:
         | 
| 15 | 
            +
                    match = re.match(pattern, string)
         | 
| 16 | 
            +
                    if match:
         | 
| 17 | 
            +
                        epoch = int(match.group(1))
         | 
| 18 | 
            +
                        step = int(match.group(2))
         | 
| 19 | 
            +
                        extracted_info.append((epoch, step, string))
         | 
| 20 | 
            +
                # 按照 epoch 后面的数字和 step 后面的数字进行排序
         | 
| 21 | 
            +
                sorted_info = sorted(
         | 
| 22 | 
            +
                    extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
         | 
| 23 | 
            +
                # 获取最新的 ckpt 文件名
         | 
| 24 | 
            +
                newest_ckpt = sorted_info[0][2]
         | 
| 25 | 
            +
                return newest_ckpt
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            # 文本存在且不为空时 return True
         | 
| 29 | 
            +
            def check_txt_file(file_path):
         | 
| 30 | 
            +
                try:
         | 
| 31 | 
            +
                    with open(file_path, 'r') as file:
         | 
| 32 | 
            +
                        text = file.readline().strip()
         | 
| 33 | 
            +
                    assert text.strip() != ''
         | 
| 34 | 
            +
                    return text
         | 
| 35 | 
            +
                except Exception:
         | 
| 36 | 
            +
                    return False
         | 
| 37 | 
            +
                return False
         | 
    	
        AR/utils/initialize.py
    ADDED
    
    | @@ -0,0 +1,38 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python3
         | 
| 2 | 
            +
            """Initialize modules for espnet2 neural networks."""
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            from typeguard import check_argument_types
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            def initialize(model: torch.nn.Module, init: str):
         | 
| 8 | 
            +
                """Initialize weights of a neural network module.
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                Parameters are initialized using the given method or distribution.
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                Custom initialization routines can be implemented into submodules
         | 
| 13 | 
            +
                as function `espnet_initialization_fn` within the custom module.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                Args:
         | 
| 16 | 
            +
                    model: Target.
         | 
| 17 | 
            +
                    init: Method of initialization.
         | 
| 18 | 
            +
                """
         | 
| 19 | 
            +
                assert check_argument_types()
         | 
| 20 | 
            +
                print("init with", init)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                # weight init
         | 
| 23 | 
            +
                for p in model.parameters():
         | 
| 24 | 
            +
                    if p.dim() > 1:
         | 
| 25 | 
            +
                        if init == "xavier_uniform":
         | 
| 26 | 
            +
                            torch.nn.init.xavier_uniform_(p.data)
         | 
| 27 | 
            +
                        elif init == "xavier_normal":
         | 
| 28 | 
            +
                            torch.nn.init.xavier_normal_(p.data)
         | 
| 29 | 
            +
                        elif init == "kaiming_uniform":
         | 
| 30 | 
            +
                            torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
         | 
| 31 | 
            +
                        elif init == "kaiming_normal":
         | 
| 32 | 
            +
                            torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
         | 
| 33 | 
            +
                        else:
         | 
| 34 | 
            +
                            raise ValueError("Unknown initialization: " + init)
         | 
| 35 | 
            +
                # bias init
         | 
| 36 | 
            +
                for name, p in model.named_parameters():
         | 
| 37 | 
            +
                    if ".bias" in name and p.dim() == 1:
         | 
| 38 | 
            +
                        p.data.zero_()
         | 
    	
        AR/utils/io.py
    ADDED
    
    | @@ -0,0 +1,34 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import sys
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import yaml
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            def load_yaml_config(path):
         | 
| 8 | 
            +
                with open(path) as f:
         | 
| 9 | 
            +
                    config = yaml.full_load(f)
         | 
| 10 | 
            +
                return config
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def save_config_to_yaml(config, path):
         | 
| 14 | 
            +
                assert path.endswith(".yaml")
         | 
| 15 | 
            +
                with open(path, "w") as f:
         | 
| 16 | 
            +
                    f.write(yaml.dump(config))
         | 
| 17 | 
            +
                    f.close()
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            def write_args(args, path):
         | 
| 21 | 
            +
                args_dict = dict(
         | 
| 22 | 
            +
                    (name, getattr(args, name)) for name in dir(args) if not name.startswith("_")
         | 
| 23 | 
            +
                )
         | 
| 24 | 
            +
                with open(path, "a") as args_file:
         | 
| 25 | 
            +
                    args_file.write("==> torch version: {}\n".format(torch.__version__))
         | 
| 26 | 
            +
                    args_file.write(
         | 
| 27 | 
            +
                        "==> cudnn version: {}\n".format(torch.backends.cudnn.version())
         | 
| 28 | 
            +
                    )
         | 
| 29 | 
            +
                    args_file.write("==> Cmd:\n")
         | 
| 30 | 
            +
                    args_file.write(str(sys.argv))
         | 
| 31 | 
            +
                    args_file.write("\n==> args:\n")
         | 
| 32 | 
            +
                    for k, v in sorted(args_dict.items()):
         | 
| 33 | 
            +
                        args_file.write("  %s: %s\n" % (str(k), str(v)))
         | 
| 34 | 
            +
                    args_file.close()
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,15 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: GPT SoVITS V2
         | 
| 3 | 
            -
            emoji:  | 
| 4 | 
             
            colorFrom: indigo
         | 
| 5 | 
             
            colorTo: red
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version:  | 
| 8 | 
            -
            app_file:  | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            -
             | 
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: GPT SoVITS V2
         | 
| 3 | 
            +
            emoji: 🤗
         | 
| 4 | 
             
            colorFrom: indigo
         | 
| 5 | 
             
            colorTo: red
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 3.38.0
         | 
| 8 | 
            +
            app_file: inference_webui.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
            GPT-SoVITS-v2 Zero-shot TTS demo
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            Input 3~10s reference audio to guide the time-bre, speed, emotion of voice, and generate the speech you want by input the inference text.
         | 
    	
        __pycache__/utils.cpython-39.pyc
    ADDED
    
    | Binary file (11.4 kB). View file | 
|  | 
    	
        configs/s1.yaml
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            train:
         | 
| 2 | 
            +
              seed: 1234
         | 
| 3 | 
            +
              epochs: 300
         | 
| 4 | 
            +
              batch_size: 8
         | 
| 5 | 
            +
              gradient_accumulation: 4
         | 
| 6 | 
            +
              save_every_n_epoch: 1
         | 
| 7 | 
            +
              precision: 16
         | 
| 8 | 
            +
              gradient_clip: 1.0
         | 
| 9 | 
            +
            optimizer:
         | 
| 10 | 
            +
              lr: 0.01
         | 
| 11 | 
            +
              lr_init: 0.00001
         | 
| 12 | 
            +
              lr_end: 0.0001
         | 
| 13 | 
            +
              warmup_steps: 2000
         | 
| 14 | 
            +
              decay_steps: 40000
         | 
| 15 | 
            +
            data:
         | 
| 16 | 
            +
              max_eval_sample: 8
         | 
| 17 | 
            +
              max_sec: 54
         | 
| 18 | 
            +
              num_workers: 1
         | 
| 19 | 
            +
              pad_val: 1024 # same with EOS in model
         | 
| 20 | 
            +
            model:
         | 
| 21 | 
            +
              vocab_size: 1025
         | 
| 22 | 
            +
              phoneme_vocab_size: 512
         | 
| 23 | 
            +
              embedding_dim: 512
         | 
| 24 | 
            +
              hidden_dim: 512
         | 
| 25 | 
            +
              head: 16
         | 
| 26 | 
            +
              linear_units: 2048
         | 
| 27 | 
            +
              n_layer: 12
         | 
| 28 | 
            +
              dropout: 0
         | 
| 29 | 
            +
              EOS: 1024
         | 
| 30 | 
            +
            inference:
         | 
| 31 | 
            +
              top_k: 5
         | 
    	
        configs/s1big.yaml
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            train:
         | 
| 2 | 
            +
              seed: 1234
         | 
| 3 | 
            +
              epochs: 300
         | 
| 4 | 
            +
              batch_size: 8
         | 
| 5 | 
            +
              gradient_accumulation: 4
         | 
| 6 | 
            +
              save_every_n_epoch: 1
         | 
| 7 | 
            +
              precision: 16-mixed
         | 
| 8 | 
            +
              gradient_clip: 1.0
         | 
| 9 | 
            +
            optimizer:
         | 
| 10 | 
            +
              lr: 0.01
         | 
| 11 | 
            +
              lr_init: 0.00001
         | 
| 12 | 
            +
              lr_end: 0.0001
         | 
| 13 | 
            +
              warmup_steps: 2000
         | 
| 14 | 
            +
              decay_steps: 40000
         | 
| 15 | 
            +
            data:
         | 
| 16 | 
            +
              max_eval_sample: 8
         | 
| 17 | 
            +
              max_sec: 54
         | 
| 18 | 
            +
              num_workers: 1
         | 
| 19 | 
            +
              pad_val: 1024 # same with EOS in model
         | 
| 20 | 
            +
            model:
         | 
| 21 | 
            +
              vocab_size: 1025
         | 
| 22 | 
            +
              phoneme_vocab_size: 512
         | 
| 23 | 
            +
              embedding_dim: 1024
         | 
| 24 | 
            +
              hidden_dim: 1024
         | 
| 25 | 
            +
              head: 16
         | 
| 26 | 
            +
              linear_units: 2048
         | 
| 27 | 
            +
              n_layer: 16
         | 
| 28 | 
            +
              dropout: 0
         | 
| 29 | 
            +
              EOS: 1024
         | 
| 30 | 
            +
            inference:
         | 
| 31 | 
            +
              top_k: 5
         | 
    	
        configs/s1big2.yaml
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            train:
         | 
| 2 | 
            +
              seed: 1234
         | 
| 3 | 
            +
              epochs: 300
         | 
| 4 | 
            +
              batch_size: 12
         | 
| 5 | 
            +
              gradient_accumulation: 4
         | 
| 6 | 
            +
              save_every_n_epoch: 1
         | 
| 7 | 
            +
              precision: 16-mixed
         | 
| 8 | 
            +
              gradient_clip: 1.0
         | 
| 9 | 
            +
            optimizer:
         | 
| 10 | 
            +
              lr: 0.01
         | 
| 11 | 
            +
              lr_init: 0.00001
         | 
| 12 | 
            +
              lr_end: 0.0001
         | 
| 13 | 
            +
              warmup_steps: 2000
         | 
| 14 | 
            +
              decay_steps: 40000
         | 
| 15 | 
            +
            data:
         | 
| 16 | 
            +
              max_eval_sample: 8
         | 
| 17 | 
            +
              max_sec: 54
         | 
| 18 | 
            +
              num_workers: 1
         | 
| 19 | 
            +
              pad_val: 1024 # same with EOS in model
         | 
| 20 | 
            +
            model:
         | 
| 21 | 
            +
              vocab_size: 1025
         | 
| 22 | 
            +
              phoneme_vocab_size: 512
         | 
| 23 | 
            +
              embedding_dim: 1024
         | 
| 24 | 
            +
              hidden_dim: 1024
         | 
| 25 | 
            +
              head: 16
         | 
| 26 | 
            +
              linear_units: 2048
         | 
| 27 | 
            +
              n_layer: 6
         | 
| 28 | 
            +
              dropout: 0
         | 
| 29 | 
            +
              EOS: 1024
         | 
| 30 | 
            +
            inference:
         | 
| 31 | 
            +
              top_k: 5
         | 
    	
        configs/s1longer-v2.yaml
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            train:
         | 
| 2 | 
            +
              seed: 1234
         | 
| 3 | 
            +
              epochs: 20
         | 
| 4 | 
            +
              batch_size: 8
         | 
| 5 | 
            +
              save_every_n_epoch: 1
         | 
| 6 | 
            +
              precision: 16-mixed
         | 
| 7 | 
            +
              gradient_clip: 1.0
         | 
| 8 | 
            +
            optimizer:
         | 
| 9 | 
            +
              lr: 0.01
         | 
| 10 | 
            +
              lr_init: 0.00001
         | 
| 11 | 
            +
              lr_end: 0.0001
         | 
| 12 | 
            +
              warmup_steps: 2000
         | 
| 13 | 
            +
              decay_steps: 40000
         | 
| 14 | 
            +
            data:
         | 
| 15 | 
            +
              max_eval_sample: 8
         | 
| 16 | 
            +
              max_sec: 54
         | 
| 17 | 
            +
              num_workers: 4
         | 
| 18 | 
            +
              pad_val: 1024 # same with EOS in model
         | 
| 19 | 
            +
            model:
         | 
| 20 | 
            +
              vocab_size: 1025
         | 
| 21 | 
            +
              phoneme_vocab_size: 732
         | 
| 22 | 
            +
              embedding_dim: 512
         | 
| 23 | 
            +
              hidden_dim: 512
         | 
| 24 | 
            +
              head: 16
         | 
| 25 | 
            +
              linear_units: 2048
         | 
| 26 | 
            +
              n_layer: 24
         | 
| 27 | 
            +
              dropout: 0
         | 
| 28 | 
            +
              EOS: 1024
         | 
| 29 | 
            +
              random_bert: 0
         | 
| 30 | 
            +
            inference:
         | 
| 31 | 
            +
              top_k: 15
         | 
    	
        configs/s1longer.yaml
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            train:
         | 
| 2 | 
            +
              seed: 1234
         | 
| 3 | 
            +
              epochs: 20
         | 
| 4 | 
            +
              batch_size: 8
         | 
| 5 | 
            +
              save_every_n_epoch: 1
         | 
| 6 | 
            +
              precision: 16-mixed
         | 
| 7 | 
            +
              gradient_clip: 1.0
         | 
| 8 | 
            +
            optimizer:
         | 
| 9 | 
            +
              lr: 0.01
         | 
| 10 | 
            +
              lr_init: 0.00001
         | 
| 11 | 
            +
              lr_end: 0.0001
         | 
| 12 | 
            +
              warmup_steps: 2000
         | 
| 13 | 
            +
              decay_steps: 40000
         | 
| 14 | 
            +
            data:
         | 
| 15 | 
            +
              max_eval_sample: 8
         | 
| 16 | 
            +
              max_sec: 54
         | 
| 17 | 
            +
              num_workers: 4
         | 
| 18 | 
            +
              pad_val: 1024 # same with EOS in model
         | 
| 19 | 
            +
            model:
         | 
| 20 | 
            +
              vocab_size: 1025
         | 
| 21 | 
            +
              phoneme_vocab_size: 512
         | 
| 22 | 
            +
              embedding_dim: 512
         | 
| 23 | 
            +
              hidden_dim: 512
         | 
| 24 | 
            +
              head: 16
         | 
| 25 | 
            +
              linear_units: 2048
         | 
| 26 | 
            +
              n_layer: 24
         | 
| 27 | 
            +
              dropout: 0
         | 
| 28 | 
            +
              EOS: 1024
         | 
| 29 | 
            +
              random_bert: 0
         | 
| 30 | 
            +
            inference:
         | 
| 31 | 
            +
              top_k: 5
         | 
    	
        configs/s1mq.yaml
    ADDED
    
    | @@ -0,0 +1,77 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            train:
         | 
| 2 | 
            +
              seed: 1234
         | 
| 3 | 
            +
              epochs: 100
         | 
| 4 | 
            +
              batch_size: 6
         | 
| 5 | 
            +
              gradient_accumulation: 4
         | 
| 6 | 
            +
              save_every_n_epoch: 1
         | 
| 7 | 
            +
              precision: 32
         | 
| 8 | 
            +
              gradient_clip: 1.0
         | 
| 9 | 
            +
            optimizer:
         | 
| 10 | 
            +
              lr: 0.01
         | 
| 11 | 
            +
              lr_init: 0.00001
         | 
| 12 | 
            +
              lr_end: 0.0001
         | 
| 13 | 
            +
              warmup_steps: 2000
         | 
| 14 | 
            +
              decay_steps: 40000
         | 
| 15 | 
            +
            data:
         | 
| 16 | 
            +
              max_eval_sample: 8
         | 
| 17 | 
            +
              max_sec: 40
         | 
| 18 | 
            +
              num_workers: 1
         | 
| 19 | 
            +
              pad_val: 1024 # same with EOS in model
         | 
| 20 | 
            +
            model:
         | 
| 21 | 
            +
              saving_path: "ckpt/"
         | 
| 22 | 
            +
              resume_checkpoint: null
         | 
| 23 | 
            +
              vocoder_config_path: "quantizer/new_ckpt/config.json"
         | 
| 24 | 
            +
              vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
         | 
| 25 | 
            +
              datadir: "/home/liweiche/GigaSpeech/wavs"
         | 
| 26 | 
            +
              metapath: "/home/liweiche/GigaSpeech/train2.json"
         | 
| 27 | 
            +
              val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
         | 
| 28 | 
            +
              sampledir: "logs/"
         | 
| 29 | 
            +
              pretrained_path: null
         | 
| 30 | 
            +
              lr: 0.0001
         | 
| 31 | 
            +
              batch_size: 200.0
         | 
| 32 | 
            +
              train_bucket_size: 8192
         | 
| 33 | 
            +
              training_step: 800000
         | 
| 34 | 
            +
              optim_flat_percent: 0.0
         | 
| 35 | 
            +
              warmup_step: 50
         | 
| 36 | 
            +
              adam_beta1: 0.9
         | 
| 37 | 
            +
              adam_beta2: 0.98
         | 
| 38 | 
            +
              ffd_size: 3072
         | 
| 39 | 
            +
              hidden_size: 768
         | 
| 40 | 
            +
              enc_nlayers: 6
         | 
| 41 | 
            +
              dec_nlayers: 6
         | 
| 42 | 
            +
              nheads: 12
         | 
| 43 | 
            +
              ar_layer: 4
         | 
| 44 | 
            +
              ar_ffd_size: 1024
         | 
| 45 | 
            +
              ar_hidden_size: 256
         | 
| 46 | 
            +
              ar_nheads: 4
         | 
| 47 | 
            +
              aligner_softmax_temp: 1.0
         | 
| 48 | 
            +
              layer_norm_eps: 0.00001
         | 
| 49 | 
            +
              speaker_embed_dropout: 0.05
         | 
| 50 | 
            +
              label_smoothing: 0.0
         | 
| 51 | 
            +
              val_check_interval: 5000
         | 
| 52 | 
            +
              check_val_every_n_epoch: 1
         | 
| 53 | 
            +
              precision: "fp16"
         | 
| 54 | 
            +
              nworkers: 16
         | 
| 55 | 
            +
              distributed: true
         | 
| 56 | 
            +
              accelerator: "ddp"
         | 
| 57 | 
            +
              version: null
         | 
| 58 | 
            +
              accumulate_grad_batches: 1
         | 
| 59 | 
            +
              use_repetition_token: true
         | 
| 60 | 
            +
              use_repetition_gating: false
         | 
| 61 | 
            +
              repetition_penalty: 1.0
         | 
| 62 | 
            +
              sampling_temperature: 1.0
         | 
| 63 | 
            +
              top_k: -1
         | 
| 64 | 
            +
              min_top_k: 3
         | 
| 65 | 
            +
              top_p: 0.8
         | 
| 66 | 
            +
              sample_num: 4
         | 
| 67 | 
            +
              length_penalty_max_length: 15000
         | 
| 68 | 
            +
              length_penalty_max_prob: 0.95
         | 
| 69 | 
            +
              max_input_length: 2048
         | 
| 70 | 
            +
              max_output_length: 2000
         | 
| 71 | 
            +
              sample_rate: 16000
         | 
| 72 | 
            +
              n_codes: 1024
         | 
| 73 | 
            +
              n_cluster_groups: 1
         | 
| 74 | 
            +
              phone_context_window: 4
         | 
| 75 | 
            +
              phoneset_size: 1000
         | 
| 76 | 
            +
            inference:
         | 
| 77 | 
            +
              top_k: 5
         | 
 
			
