Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,905 Bytes
d5f497d 6c91ee7 66fd925 6c91ee7 011d756 a0ed24e 66fd925 d5f497d 66fd925 6c91ee7 66fd925 6c91ee7 a0ed24e d5f497d a0ed24e d5f497d a0ed24e 66fd925 a0ed24e 66fd925 a0ed24e 6c91ee7 d5f497d 66fd925 a0ed24e d5f497d 66fd925 a0ed24e 66fd925 6c91ee7 66fd925 a0ed24e 66fd925 a0ed24e 66fd925 6c91ee7 66fd925 a0ed24e 66fd925 d5f497d 8004741 98c6239 d5f497d 66fd925 a0ed24e 6c91ee7 a0ed24e d5f497d a0ed24e 2502de8 66fd925 a0ed24e 66fd925 a0ed24e 66fd925 a0ed24e 66fd925 a0ed24e 66fd925 a0ed24e 78ad020 a0ed24e d5f497d a0ed24e 66fd925 a04b247 20c2217 a0ed24e d5f497d f92dc60 a0ed24e f92dc60 a0ed24e 3f2277e 6429b4b a0ed24e 6429b4b d5f497d a0ed24e d5f497d 6c91ee7 a0ed24e d5f497d a0ed24e d5f497d a0ed24e d5f497d 66fd925 d5f497d 66fd925 d5f497d 78ad020 a0ed24e d5f497d a0ed24e d5f497d a0ed24e d5f497d 66fd925 a0ed24e 78ad020 a0ed24e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download, login
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
# Hugging Face 토큰으로 로그인
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
print("Successfully logged in to Hugging Face Hub")
else:
print("Warning: HF_TOKEN not found. Using public access only.")
# GPU 사용 가능 여부 확인
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# 모델 다운로드 (토큰 사용)
try:
ckpt_dir = snapshot_download(
repo_id="Kwai-Kolors/Kolors",
token=HF_TOKEN,
local_dir_use_symlinks=False
)
ckpt_dir_faceid = snapshot_download(
repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",
token=HF_TOKEN,
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading models: {e}")
raise
# 모델 로딩 with error handling
try:
text_encoder = ChatGLMModel.from_pretrained(
f'{ckpt_dir}/text_encoder',
torch_dtype=dtype,
token=HF_TOKEN,
trust_remote_code=True
)
if device == "cuda":
text_encoder = text_encoder.half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(
f'{ckpt_dir}/text_encoder',
token=HF_TOKEN,
trust_remote_code=True
)
vae = AutoencoderKL.from_pretrained(
f"{ckpt_dir}/vae",
revision=None,
torch_dtype=dtype,
token=HF_TOKEN
)
if device == "cuda":
vae = vae.half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(
f"{ckpt_dir}/scheduler",
token=HF_TOKEN
)
unet = UNet2DConditionModel.from_pretrained(
f"{ckpt_dir}/unet",
revision=None,
torch_dtype=dtype,
token=HF_TOKEN
)
if device == "cuda":
unet = unet.half().to(device)
# CLIP 모델 로딩 with fallback
try:
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f'{ckpt_dir_faceid}/clip-vit-large-patch14-336',
torch_dtype=dtype,
ignore_mismatched_sizes=True,
token=HF_TOKEN
)
except Exception as e:
print(f"Loading CLIP from local failed: {e}, trying alternative source...")
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
'openai/clip-vit-large-patch14-336',
torch_dtype=dtype,
ignore_mismatched_sizes=True,
token=HF_TOKEN
)
clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
except Exception as e:
print(f"Error loading models: {e}")
raise
# Pipeline 생성
pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
face_clip_encoder=clip_image_encoder,
face_clip_processor=clip_image_processor,
force_zeros_for_empty_prompt=False,
)
class FaceInfoGenerator():
def __init__(self, root_dir="./.insightface/"):
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if device == "cuda" else ['CPUExecutionProvider']
self.app = FaceAnalysis(name='antelopev2', root=root_dir, providers=providers)
self.app.prepare(ctx_id=0, det_size=(640, 640))
def get_faceinfo_one_img(self, face_image):
if face_image is None:
return None
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
return None
else:
# only use the maximum face
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]
return face_info
def face_bbox_to_square(bbox):
## l, t, r, b to square l, t, r, b
l, t, r, b = bbox
cent_x = (l + r) / 2
cent_y = (t + b) / 2
w, h = r - l, b - t
r = max(w, h) / 2
l0 = cent_x - r
r0 = cent_x + r
t0 = cent_y - r
b0 = cent_y + r
return [l0, t0, r0, b0]
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator()
@spaces.GPU
def infer(prompt,
image=None,
negative_prompt="low quality, blurry, distorted",
seed=66,
randomize_seed=False,
guidance_scale=5.0,
num_inference_steps=50
):
if image is None:
return None, 0
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
global pipe
pipe = pipe.to(device)
# IP Adapter 로딩
try:
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device=device)
scale = 0.8
pipe.set_face_fidelity_scale(scale)
except Exception as e:
print(f"Error loading IP adapter: {e}")
raise
# Face 정보 추출
face_info = face_info_generator.get_faceinfo_one_img(image)
if face_info is None:
raise gr.Error("No face detected in the image. Please provide an image with a clear face.")
face_bbox_square = face_bbox_to_square(face_info["bbox"])
crop_image = image.crop(face_bbox_square)
crop_image = crop_image.resize((336, 336))
crop_image = [crop_image]
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
face_embeds = face_embeds.to(device, dtype=dtype)
# 이미지 생성
try:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=1024,
width=1024,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
face_crop_image=crop_image,
face_insightface_embeds=face_embeds
).images[0]
except Exception as e:
print(f"Error during inference: {e}")
raise gr.Error(f"Failed to generate image: {str(e)}")
return image, seed
css = """
footer {
visibility: hidden;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
"""
def load_description(fp):
if os.path.exists(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
return ""
# Gradio Interface
with gr.Blocks(theme="soft", css=css) as Kolors:
gr.HTML(
"""
<div class='container' style='display:flex; justify-content:center; gap:12px;'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
</a>
</div>
<h1 style="text-align: center;">Kolors Face ID - AI Portrait Generator</h1>
<p style="text-align: center;">Upload a face photo and create stunning AI portraits with text prompts!</p>
"""
)
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="e.g., A professional portrait in business attire, studio lighting",
lines=3,
value="A professional portrait photo, high quality, detailed face"
)
with gr.Row():
image = gr.Image(
label="Upload Face Image",
type="pil",
height=400
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Things to avoid in the image",
value="low quality, blurry, distorted, disfigured",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=66,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
button = gr.Button("🎨 Generate Portrait", elem_id="button", variant="primary", scale=1)
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Generated Portrait", show_label=True)
seed_used = gr.Number(label="Seed Used", precision=0)
# 예제 추가
gr.Examples(
examples=[
["A cinematic portrait, dramatic lighting, professional photography", None],
["An oil painting portrait in Renaissance style, classical art", None],
["A cyberpunk character portrait, neon lights, futuristic", None],
],
inputs=[prompt, image],
)
button.click(
fn=infer,
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs=[result, seed_used]
)
if __name__ == "__main__":
Kolors.queue(max_size=10).launch(debug=True, share=False) |