kofaceid / app.py
aiqtech's picture
Update app.py
9335941 verified
raw
history blame
17.3 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
from diffusers.utils import is_xformers_available
import os
import base64
import json
from huggingface_hub import InferenceClient
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#############################
def get_caption_language(prompt):
"""Detects if the prompt contains Chinese characters."""
ranges = [
('\u4e00', '\u9fff'), # CJK Unified Ideographs
]
for char in prompt:
if any(start <= char <= end for start, end in ranges):
return 'zh'
return 'en'
def polish_prompt(original_prompt, system_prompt, hf_token):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
Requires user-provided HF token for API access.
"""
if not hf_token or not hf_token.strip():
gr.Warning("HF Token is required for prompt rewriting but was not provided!")
return original_prompt
client = InferenceClient(
provider="cerebras",
api_key=hf_token,
)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": original_prompt}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
max_tokens=512,
)
polished_prompt = completion.choices[0].message.content
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during Hugging Face API call: {e}")
gr.Warning("Failed to rewrite prompt. Using original.")
return original_prompt
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person's face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
if is_xformers_available():
pipe.enable_xformers_memory_efficient_attention()
else:
print("xformers not available or failed to load.")
@spaces.GPU(duration=60)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=8,
rewrite_prompt=False,
hf_token="",
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Requires user-provided HF token for prompt rewriting.
"""
original_prompt = prompt # Save original prompt for display
negative_prompt = " "
prompt_info = "" # Initialize info text
# Handle prompt rewriting with status messages
if rewrite_prompt:
if not hf_token.strip():
gr.Warning("HF Token is required for prompt rewriting but was not provided!")
prompt_info = f"""<div class="prompt-info-box warning">
<h3>⚠️ Prompt Rewriting Skipped</h3>
<p><strong>Original:</strong> {original_prompt}</p>
<p class="note">HF Token required for enhancement</p>
</div>"""
rewritten_prompt = original_prompt
else:
try:
rewritten_prompt = polish_prompt(original_prompt, SYSTEM_PROMPT_EDIT, hf_token)
prompt_info = f"""<div class="prompt-info-box success">
<h3>✨ Enhanced Successfully</h3>
<p><strong>Original:</strong> {original_prompt}</p>
<p><strong>Enhanced:</strong> {rewritten_prompt}</p>
</div>"""
except Exception as e:
gr.Warning(f"Prompt rewriting failed: {str(e)}")
rewritten_prompt = original_prompt
prompt_info = f"""<div class="prompt-info-box error">
<h3>❌ Enhancement Failed</h3>
<p><strong>Original:</strong> {original_prompt}</p>
<p class="note">Error: {str(e)}</p>
</div>"""
else:
rewritten_prompt = original_prompt
prompt_info = f"""<div class="prompt-info-box default">
<h3>📝 Original Prompt</h3>
<p>{original_prompt}</p>
</div>"""
# Generate images
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
edited_images = pipe(
image,
prompt=rewritten_prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
return edited_images, seed, prompt_info
MAX_SEED = np.iinfo(np.int32).max
examples = [
"Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
"Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
"Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
"Remove the blue sky and replace it with a dark night cityscape.",
"""Replace "Qwen" with "通义" in the Image. Ensure Chinese font is used for "通义" and position it to the top left with a light heading-style font."""
]
# Custom CSS for enhanced visual design
custom_css = """
/* Gradient background */
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #fecfef 75%, #fecfef 100%);
min-height: 100vh;
}
/* Main container styling */
.container {
max-width: 1400px !important;
margin: 0 auto !important;
padding: 2rem !important;
}
/* Card-like sections */
.gr-box {
background: rgba(255, 255, 255, 0.95) !important;
backdrop-filter: blur(10px) !important;
border-radius: 20px !important;
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1) !important;
border: 1px solid rgba(255, 255, 255, 0.5) !important;
padding: 1.5rem !important;
margin-bottom: 1.5rem !important;
}
/* Header styling */
h1 {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 3rem !important;
font-weight: 800 !important;
text-align: center;
margin-bottom: 0.5rem !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
h2 {
color: #4a5568 !important;
font-size: 1.5rem !important;
font-weight: 600 !important;
margin-bottom: 1rem !important;
}
/* Button styling */
.gr-button-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
padding: 0.8rem 2rem !important;
border-radius: 12px !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
transition: all 0.3s ease !important;
}
.gr-button-primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.5) !important;
}
/* Input fields styling */
.gr-input, .gr-text-input, .gr-slider, .gr-dropdown {
border-radius: 10px !important;
border: 2px solid #e2e8f0 !important;
background: white !important;
transition: all 0.3s ease !important;
}
.gr-input:focus, .gr-text-input:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* Accordion styling */
.gr-accordion {
background: rgba(255, 255, 255, 0.8) !important;
border-radius: 12px !important;
border: 1px solid rgba(102, 126, 234, 0.2) !important;
overflow: hidden !important;
}
/* Gallery styling */
.gr-gallery {
border-radius: 12px !important;
overflow: hidden !important;
}
/* Prompt info boxes */
.prompt-info-box {
padding: 1.5rem;
border-radius: 12px;
margin: 1rem 0;
animation: fadeIn 0.5s ease;
}
.prompt-info-box h3 {
margin: 0 0 0.75rem 0;
font-size: 1.2rem;
font-weight: 600;
}
.prompt-info-box p {
margin: 0.5rem 0;
line-height: 1.6;
}
.prompt-info-box.success {
background: linear-gradient(135deg, #d4f4dd 0%, #e3f9e5 100%);
border-left: 4px solid #48bb78;
}
.prompt-info-box.warning {
background: linear-gradient(135deg, #fef5e7 0%, #fff9ec 100%);
border-left: 4px solid #f6ad55;
}
.prompt-info-box.error {
background: linear-gradient(135deg, #fed7d7 0%, #fee5e5 100%);
border-left: 4px solid #fc8181;
}
.prompt-info-box.default {
background: linear-gradient(135deg, #e6f3ff 0%, #f0f7ff 100%);
border-left: 4px solid #667eea;
}
.prompt-info-box .note {
font-size: 0.9rem;
color: #718096;
font-style: italic;
}
/* Checkbox styling */
.gr-checkbox {
background: white !important;
border-radius: 8px !important;
padding: 0.5rem !important;
}
/* Token input field */
input[type="password"] {
font-family: monospace !important;
letter-spacing: 0.05em !important;
}
/* Info badges */
.gr-markdown p {
color: #4a5568;
line-height: 1.6;
}
.gr-markdown a {
color: #667eea !important;
text-decoration: none !important;
font-weight: 500 !important;
transition: color 0.3s ease !important;
}
.gr-markdown a:hover {
color: #764ba2 !important;
text-decoration: underline !important;
}
/* Animation */
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
/* Slider styling */
.gr-slider input[type="range"] {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;
}
/* Group styling */
.gr-group {
background: rgba(249, 250, 251, 0.8) !important;
border-radius: 12px !important;
padding: 1rem !important;
margin-top: 1rem !important;
}
/* Loading spinner customization */
.gr-loading {
color: #667eea !important;
}
/* Example buttons */
.gr-examples button {
background: white !important;
border: 2px solid #e2e8f0 !important;
border-radius: 8px !important;
padding: 0.5rem 1rem !important;
transition: all 0.3s ease !important;
}
.gr-examples button:hover {
border-color: #667eea !important;
background: rgba(102, 126, 234, 0.05) !important;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🎨 Nano-Banana")
gr.Markdown("✨ **Ultra-fast 8-step image editing with AI-powered prompt enhancement**")
gr.Markdown("🔐 **Secure prompt rewriting with your [Hugging Face token](https://huggingface.co/settings/tokens)**")
# 배지를 가운데 정렬하여 나란히 배치
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; gap: 20px; margin: 20px 0;">
<a href="https://huggingface.co/spaces/Heartsync/Nano-Banana" target="_blank">
<img src="https://img.shields.io/static/v1?label=OPEN%20NANO-BANANA&message=Image%20EDITOR&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
input_image = gr.Image(
label="📸 Input Image",
type="pil",
elem_classes="gr-box"
)
prompt = gr.Text(
label="✏️ Edit Instruction",
placeholder="e.g. Add a dog to the right side, change the sky to sunset...",
lines=3,
elem_classes="gr-box"
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(label="🎲 Randomize Seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=4,
maximum=16,
step=1,
value=8
)
num_images_per_prompt = gr.Slider(
label="Images per Prompt",
minimum=1,
maximum=4,
step=1,
value=1
)
run_button = gr.Button("🚀 Generate Edit", variant="primary", size="lg")
with gr.Column(scale=1):
result = gr.Gallery(
label="🖼️ Output Images",
show_label=True,
columns=2,
rows=2,
elem_classes="gr-box"
)
# Prompt display component
prompt_info = gr.HTML(visible=False)
with gr.Group():
rewrite_toggle = gr.Checkbox(
label="🤖 Enable AI Prompt Enhancement",
value=False,
interactive=True
)
hf_token_input = gr.Textbox(
label="🔑 Hugging Face API Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
visible=False,
info="Your token is secure and only used for API calls. Get yours from HuggingFace settings.",
elem_classes="gr-box"
)
def toggle_token_visibility(checked):
return gr.update(visible=checked)
rewrite_toggle.change(
toggle_token_visibility,
inputs=[rewrite_toggle],
outputs=[hf_token_input]
)
# Examples section
gr.Examples(
examples=examples,
inputs=prompt,
label="💡 Example Prompts"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
hf_token_input,
num_images_per_prompt
],
outputs=[result, seed, prompt_info]
)
# Show prompt info box after processing
def set_prompt_visible():
return gr.update(visible=True)
run_button.click(
fn=set_prompt_visible,
inputs=None,
outputs=[prompt_info],
queue=False
)
prompt.submit(
fn=set_prompt_visible,
inputs=None,
outputs=[prompt_info],
queue=False
)
if __name__ == "__main__":
demo.launch()