Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import insightface
|
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import os
|
|
|
9 |
from huggingface_hub import snapshot_download, login
|
10 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
11 |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
|
@@ -18,6 +19,22 @@ from PIL import Image
|
|
18 |
from insightface.app import FaceAnalysis
|
19 |
from insightface.data import get_image as ins_get_image
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Hugging Face 토큰으로 로그인
|
22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
if HF_TOKEN:
|
@@ -30,87 +47,120 @@ else:
|
|
30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
32 |
|
|
|
|
|
|
|
33 |
# 모델 다운로드 (토큰 사용)
|
34 |
try:
|
|
|
35 |
ckpt_dir = snapshot_download(
|
36 |
repo_id="Kwai-Kolors/Kolors",
|
37 |
token=HF_TOKEN,
|
38 |
-
local_dir_use_symlinks=False
|
|
|
39 |
)
|
|
|
|
|
40 |
ckpt_dir_faceid = snapshot_download(
|
41 |
repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",
|
42 |
token=HF_TOKEN,
|
43 |
-
local_dir_use_symlinks=False
|
|
|
44 |
)
|
45 |
except Exception as e:
|
46 |
print(f"Error downloading models: {e}")
|
47 |
raise
|
48 |
|
49 |
-
# 모델 로딩
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
try:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
f"{ckpt_dir}/vae",
|
68 |
-
revision=None,
|
69 |
-
torch_dtype=dtype,
|
70 |
-
token=HF_TOKEN
|
71 |
-
)
|
72 |
-
if device == "cuda":
|
73 |
-
vae = vae.half().to(device)
|
74 |
-
|
75 |
-
scheduler = EulerDiscreteScheduler.from_pretrained(
|
76 |
-
f"{ckpt_dir}/scheduler",
|
77 |
-
token=HF_TOKEN
|
78 |
-
)
|
79 |
-
|
80 |
-
unet = UNet2DConditionModel.from_pretrained(
|
81 |
-
f"{ckpt_dir}/unet",
|
82 |
-
revision=None,
|
83 |
-
torch_dtype=dtype,
|
84 |
-
token=HF_TOKEN
|
85 |
-
)
|
86 |
-
if device == "cuda":
|
87 |
-
unet = unet.half().to(device)
|
88 |
-
|
89 |
-
# CLIP 모델 로딩 with fallback
|
90 |
try:
|
|
|
|
|
91 |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
92 |
-
|
93 |
torch_dtype=dtype,
|
94 |
ignore_mismatched_sizes=True,
|
95 |
-
token=HF_TOKEN
|
|
|
|
|
96 |
)
|
97 |
-
except Exception as
|
98 |
-
print(f"
|
|
|
|
|
99 |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
100 |
'openai/clip-vit-large-patch14-336',
|
101 |
torch_dtype=dtype,
|
102 |
ignore_mismatched_sizes=True,
|
103 |
-
token=HF_TOKEN
|
|
|
104 |
)
|
105 |
-
|
106 |
-
clip_image_encoder.to(device)
|
107 |
-
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
|
108 |
-
|
109 |
-
except Exception as e:
|
110 |
-
print(f"Error loading models: {e}")
|
111 |
-
raise
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
pipe = StableDiffusionXLPipeline(
|
115 |
vae=vae,
|
116 |
text_encoder=text_encoder,
|
@@ -122,6 +172,8 @@ pipe = StableDiffusionXLPipeline(
|
|
122 |
force_zeros_for_empty_prompt=False,
|
123 |
)
|
124 |
|
|
|
|
|
125 |
class FaceInfoGenerator():
|
126 |
def __init__(self, root_dir="./.insightface/"):
|
127 |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if device == "cuda" else ['CPUExecutionProvider']
|
@@ -160,7 +212,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
160 |
MAX_IMAGE_SIZE = 1024
|
161 |
face_info_generator = FaceInfoGenerator()
|
162 |
|
163 |
-
@spaces.GPU
|
164 |
def infer(prompt,
|
165 |
image=None,
|
166 |
negative_prompt="low quality, blurry, distorted",
|
@@ -170,6 +222,7 @@ def infer(prompt,
|
|
170 |
num_inference_steps=50
|
171 |
):
|
172 |
if image is None:
|
|
|
173 |
return None, 0
|
174 |
|
175 |
if randomize_seed:
|
@@ -187,35 +240,40 @@ def infer(prompt,
|
|
187 |
pipe.set_face_fidelity_scale(scale)
|
188 |
except Exception as e:
|
189 |
print(f"Error loading IP adapter: {e}")
|
190 |
-
raise
|
191 |
|
192 |
# Face 정보 추출
|
193 |
face_info = face_info_generator.get_faceinfo_one_img(image)
|
194 |
if face_info is None:
|
195 |
raise gr.Error("No face detected in the image. Please provide an image with a clear face.")
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
204 |
|
205 |
# 이미지 생성
|
206 |
try:
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
219 |
except Exception as e:
|
220 |
print(f"Error during inference: {e}")
|
221 |
raise gr.Error(f"Failed to generate image: {str(e)}")
|
@@ -233,13 +291,6 @@ footer {
|
|
233 |
}
|
234 |
"""
|
235 |
|
236 |
-
def load_description(fp):
|
237 |
-
if os.path.exists(fp):
|
238 |
-
with open(fp, 'r', encoding='utf-8') as f:
|
239 |
-
content = f.read()
|
240 |
-
return content
|
241 |
-
return ""
|
242 |
-
|
243 |
# Gradio Interface
|
244 |
with gr.Blocks(theme="soft", css=css) as Kolors:
|
245 |
gr.HTML(
|
@@ -309,16 +360,6 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
309 |
with gr.Column(elem_id="col-right"):
|
310 |
result = gr.Image(label="Generated Portrait", show_label=True)
|
311 |
seed_used = gr.Number(label="Seed Used", precision=0)
|
312 |
-
|
313 |
-
# 예제 추가
|
314 |
-
gr.Examples(
|
315 |
-
examples=[
|
316 |
-
["A cinematic portrait, dramatic lighting, professional photography", None],
|
317 |
-
["An oil painting portrait in Renaissance style, classical art", None],
|
318 |
-
["A cyberpunk character portrait, neon lights, futuristic", None],
|
319 |
-
],
|
320 |
-
inputs=[prompt, image],
|
321 |
-
)
|
322 |
|
323 |
button.click(
|
324 |
fn=infer,
|
|
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import os
|
9 |
+
import shutil
|
10 |
from huggingface_hub import snapshot_download, login
|
11 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
12 |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
|
|
|
19 |
from insightface.app import FaceAnalysis
|
20 |
from insightface.data import get_image as ins_get_image
|
21 |
|
22 |
+
# 캐시 클리어 (선택적)
|
23 |
+
def clear_cache():
|
24 |
+
cache_dir = "/home/user/.cache/huggingface/hub"
|
25 |
+
if os.path.exists(cache_dir):
|
26 |
+
try:
|
27 |
+
# CLIP 모델 캐시만 삭제
|
28 |
+
clip_cache = os.path.join(cache_dir, "models--openai--clip-vit-large-patch14-336")
|
29 |
+
if os.path.exists(clip_cache):
|
30 |
+
shutil.rmtree(clip_cache)
|
31 |
+
print("Cleared CLIP cache")
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Could not clear cache: {e}")
|
34 |
+
|
35 |
+
# 캐시 클리어 (필요시)
|
36 |
+
# clear_cache()
|
37 |
+
|
38 |
# Hugging Face 토큰으로 로그인
|
39 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
40 |
if HF_TOKEN:
|
|
|
47 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
48 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
49 |
|
50 |
+
print(f"Using device: {device}")
|
51 |
+
print(f"Using dtype: {dtype}")
|
52 |
+
|
53 |
# 모델 다운로드 (토큰 사용)
|
54 |
try:
|
55 |
+
print("Downloading Kolors models...")
|
56 |
ckpt_dir = snapshot_download(
|
57 |
repo_id="Kwai-Kolors/Kolors",
|
58 |
token=HF_TOKEN,
|
59 |
+
local_dir_use_symlinks=False,
|
60 |
+
resume_download=True
|
61 |
)
|
62 |
+
|
63 |
+
print("Downloading FaceID models...")
|
64 |
ckpt_dir_faceid = snapshot_download(
|
65 |
repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",
|
66 |
token=HF_TOKEN,
|
67 |
+
local_dir_use_symlinks=False,
|
68 |
+
resume_download=True
|
69 |
)
|
70 |
except Exception as e:
|
71 |
print(f"Error downloading models: {e}")
|
72 |
raise
|
73 |
|
74 |
+
# 모델 로딩
|
75 |
+
print("Loading text encoder...")
|
76 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
77 |
+
f'{ckpt_dir}/text_encoder',
|
78 |
+
torch_dtype=dtype,
|
79 |
+
token=HF_TOKEN,
|
80 |
+
trust_remote_code=True
|
81 |
+
)
|
82 |
+
if device == "cuda":
|
83 |
+
text_encoder = text_encoder.half().to(device)
|
84 |
+
|
85 |
+
print("Loading tokenizer...")
|
86 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(
|
87 |
+
f'{ckpt_dir}/text_encoder',
|
88 |
+
token=HF_TOKEN,
|
89 |
+
trust_remote_code=True
|
90 |
+
)
|
91 |
+
|
92 |
+
print("Loading VAE...")
|
93 |
+
vae = AutoencoderKL.from_pretrained(
|
94 |
+
f"{ckpt_dir}/vae",
|
95 |
+
revision=None,
|
96 |
+
torch_dtype=dtype,
|
97 |
+
token=HF_TOKEN
|
98 |
+
)
|
99 |
+
if device == "cuda":
|
100 |
+
vae = vae.half().to(device)
|
101 |
+
|
102 |
+
print("Loading scheduler...")
|
103 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(
|
104 |
+
f"{ckpt_dir}/scheduler",
|
105 |
+
token=HF_TOKEN
|
106 |
+
)
|
107 |
+
|
108 |
+
print("Loading UNet...")
|
109 |
+
unet = UNet2DConditionModel.from_pretrained(
|
110 |
+
f"{ckpt_dir}/unet",
|
111 |
+
revision=None,
|
112 |
+
torch_dtype=dtype,
|
113 |
+
token=HF_TOKEN
|
114 |
+
)
|
115 |
+
if device == "cuda":
|
116 |
+
unet = unet.half().to(device)
|
117 |
+
|
118 |
+
# CLIP 모델 로딩 - safetensors 우선 사용
|
119 |
+
print("Loading CLIP model...")
|
120 |
try:
|
121 |
+
# 먼저 로컬 FaceID 디렉토리에서 시도
|
122 |
+
local_clip_path = f'{ckpt_dir_faceid}/clip-vit-large-patch14-336'
|
123 |
+
if os.path.exists(local_clip_path):
|
124 |
+
print(f"Trying to load CLIP from local: {local_clip_path}")
|
125 |
+
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
126 |
+
local_clip_path,
|
127 |
+
torch_dtype=dtype,
|
128 |
+
ignore_mismatched_sizes=True,
|
129 |
+
token=HF_TOKEN,
|
130 |
+
use_safetensors=True, # safetensors 우선 사용
|
131 |
+
local_files_only=True
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise FileNotFoundError("Local CLIP not found")
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Local loading failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
try:
|
138 |
+
# OpenAI에서 직접 다운로드 (safetensors 버전)
|
139 |
+
print("Downloading CLIP from OpenAI...")
|
140 |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
141 |
+
'openai/clip-vit-large-patch14-336',
|
142 |
torch_dtype=dtype,
|
143 |
ignore_mismatched_sizes=True,
|
144 |
+
token=HF_TOKEN,
|
145 |
+
use_safetensors=True, # safetensors 우선 사용
|
146 |
+
revision="main"
|
147 |
)
|
148 |
+
except Exception as e2:
|
149 |
+
print(f"SafeTensors loading failed: {e2}")
|
150 |
+
# 최후의 수단: pytorch_model.bin 사용
|
151 |
+
print("Trying with pytorch format...")
|
152 |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
153 |
'openai/clip-vit-large-patch14-336',
|
154 |
torch_dtype=dtype,
|
155 |
ignore_mismatched_sizes=True,
|
156 |
+
token=HF_TOKEN,
|
157 |
+
use_safetensors=False
|
158 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
clip_image_encoder.to(device)
|
161 |
+
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
|
162 |
+
|
163 |
+
print("Creating pipeline...")
|
164 |
pipe = StableDiffusionXLPipeline(
|
165 |
vae=vae,
|
166 |
text_encoder=text_encoder,
|
|
|
172 |
force_zeros_for_empty_prompt=False,
|
173 |
)
|
174 |
|
175 |
+
print("Models loaded successfully!")
|
176 |
+
|
177 |
class FaceInfoGenerator():
|
178 |
def __init__(self, root_dir="./.insightface/"):
|
179 |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if device == "cuda" else ['CPUExecutionProvider']
|
|
|
212 |
MAX_IMAGE_SIZE = 1024
|
213 |
face_info_generator = FaceInfoGenerator()
|
214 |
|
215 |
+
@spaces.GPU(duration=60)
|
216 |
def infer(prompt,
|
217 |
image=None,
|
218 |
negative_prompt="low quality, blurry, distorted",
|
|
|
222 |
num_inference_steps=50
|
223 |
):
|
224 |
if image is None:
|
225 |
+
gr.Warning("Please upload an image with a face.")
|
226 |
return None, 0
|
227 |
|
228 |
if randomize_seed:
|
|
|
240 |
pipe.set_face_fidelity_scale(scale)
|
241 |
except Exception as e:
|
242 |
print(f"Error loading IP adapter: {e}")
|
243 |
+
raise gr.Error(f"Failed to load face adapter: {str(e)}")
|
244 |
|
245 |
# Face 정보 추출
|
246 |
face_info = face_info_generator.get_faceinfo_one_img(image)
|
247 |
if face_info is None:
|
248 |
raise gr.Error("No face detected in the image. Please provide an image with a clear face.")
|
249 |
|
250 |
+
try:
|
251 |
+
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
252 |
+
crop_image = image.crop(face_bbox_square)
|
253 |
+
crop_image = crop_image.resize((336, 336))
|
254 |
+
crop_image = [crop_image]
|
255 |
+
|
256 |
+
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
257 |
+
face_embeds = face_embeds.to(device, dtype=dtype)
|
258 |
+
except Exception as e:
|
259 |
+
print(f"Error processing face: {e}")
|
260 |
+
raise gr.Error(f"Failed to process face: {str(e)}")
|
261 |
|
262 |
# 이미지 생성
|
263 |
try:
|
264 |
+
with torch.no_grad():
|
265 |
+
image = pipe(
|
266 |
+
prompt=prompt,
|
267 |
+
negative_prompt=negative_prompt,
|
268 |
+
height=1024,
|
269 |
+
width=1024,
|
270 |
+
num_inference_steps=num_inference_steps,
|
271 |
+
guidance_scale=guidance_scale,
|
272 |
+
num_images_per_prompt=1,
|
273 |
+
generator=generator,
|
274 |
+
face_crop_image=crop_image,
|
275 |
+
face_insightface_embeds=face_embeds
|
276 |
+
).images[0]
|
277 |
except Exception as e:
|
278 |
print(f"Error during inference: {e}")
|
279 |
raise gr.Error(f"Failed to generate image: {str(e)}")
|
|
|
291 |
}
|
292 |
"""
|
293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
# Gradio Interface
|
295 |
with gr.Blocks(theme="soft", css=css) as Kolors:
|
296 |
gr.HTML(
|
|
|
360 |
with gr.Column(elem_id="col-right"):
|
361 |
result = gr.Image(label="Generated Portrait", show_label=True)
|
362 |
seed_used = gr.Number(label="Seed Used", precision=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
button.click(
|
365 |
fn=infer,
|