Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,66 +17,70 @@ from diffusers import EulerDiscreteScheduler
|
|
17 |
from PIL import Image
|
18 |
from insightface.app import FaceAnalysis
|
19 |
|
20 |
-
#
|
|
|
|
|
21 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
22 |
if HF_TOKEN:
|
23 |
login(token=HF_TOKEN)
|
24 |
print("Successfully logged in to Hugging Face Hub")
|
25 |
|
26 |
-
# Download models
|
27 |
print("Downloading models...")
|
28 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors", token=HF_TOKEN)
|
29 |
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus", token=HF_TOKEN)
|
30 |
|
31 |
print("Loading models on CPU first...")
|
32 |
|
33 |
-
#
|
|
|
|
|
34 |
original_chatglm_pad = ChatGLMTokenizer._pad if hasattr(ChatGLMTokenizer, '_pad') else None
|
35 |
-
|
36 |
def fixed_pad(self, *args, **kwargs):
|
37 |
-
# Remove the unexpected 'padding_side' argument if present
|
38 |
kwargs.pop('padding_side', None)
|
39 |
if original_chatglm_pad:
|
40 |
return original_chatglm_pad(self, *args, **kwargs)
|
41 |
else:
|
42 |
return super(ChatGLMTokenizer, self)._pad(*args, **kwargs)
|
43 |
-
|
44 |
ChatGLMTokenizer._pad = fixed_pad
|
45 |
|
46 |
-
#
|
|
|
|
|
|
|
47 |
text_encoder = ChatGLMModel.from_pretrained(
|
48 |
-
f
|
49 |
-
torch_dtype=
|
50 |
trust_remote_code=True
|
51 |
)
|
52 |
-
|
53 |
tokenizer = ChatGLMTokenizer.from_pretrained(
|
54 |
-
f
|
55 |
trust_remote_code=True
|
56 |
)
|
57 |
-
|
58 |
vae = AutoencoderKL.from_pretrained(
|
59 |
f"{ckpt_dir}/vae",
|
60 |
-
torch_dtype=
|
61 |
)
|
62 |
-
|
63 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
64 |
-
|
65 |
unet = UNet2DConditionModel.from_pretrained(
|
66 |
f"{ckpt_dir}/unet",
|
67 |
-
torch_dtype=
|
68 |
)
|
69 |
|
70 |
-
#
|
71 |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
72 |
-
|
73 |
-
torch_dtype=
|
74 |
use_safetensors=True
|
75 |
)
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
# Create pipeline
|
80 |
pipe = StableDiffusionXLPipeline(
|
81 |
vae=vae,
|
82 |
text_encoder=text_encoder,
|
@@ -90,25 +94,39 @@ pipe = StableDiffusionXLPipeline(
|
|
90 |
|
91 |
print("Models loaded successfully!")
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
self.app = FaceAnalysis(
|
96 |
-
name=
|
97 |
root=root_dir,
|
98 |
-
providers=
|
99 |
)
|
100 |
self.app.prepare(ctx_id=0, det_size=(640, 640))
|
101 |
|
102 |
-
def get_faceinfo_one_img(self, face_image):
|
103 |
if face_image is None:
|
104 |
return None
|
105 |
-
|
106 |
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
107 |
-
|
108 |
if len(face_info) == 0:
|
109 |
return None
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
return face_info
|
113 |
|
114 |
def face_bbox_to_square(bbox):
|
@@ -116,102 +134,116 @@ def face_bbox_to_square(bbox):
|
|
116 |
cent_x = (l + r) / 2
|
117 |
cent_y = (t + b) / 2
|
118 |
w, h = r - l, b - t
|
119 |
-
|
120 |
-
|
121 |
-
l0 = cent_x - r
|
122 |
-
r0 = cent_x + r
|
123 |
-
t0 = cent_y - r
|
124 |
-
b0 = cent_y + r
|
125 |
-
|
126 |
-
return [l0, t0, r0, b0]
|
127 |
|
128 |
MAX_SEED = np.iinfo(np.int32).max
|
129 |
face_info_generator = FaceInfoGenerator()
|
130 |
|
|
|
|
|
|
|
|
|
|
|
131 |
@spaces.GPU(duration=120)
|
132 |
-
def infer(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
140 |
if image is None:
|
141 |
gr.Warning("Please upload an image with a face.")
|
142 |
return None, 0
|
143 |
-
|
144 |
-
#
|
145 |
face_info = face_info_generator.get_faceinfo_one_img(image)
|
146 |
if face_info is None:
|
147 |
raise gr.Error("No face detected. Please upload an image with a clear face.")
|
148 |
-
|
|
|
149 |
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
150 |
-
crop_image = image.crop(face_bbox_square)
|
151 |
-
crop_image = crop_image
|
152 |
-
crop_image = [crop_image]
|
153 |
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
154 |
-
|
155 |
-
#
|
156 |
-
device = torch.device(
|
157 |
global pipe
|
158 |
-
|
159 |
-
# Move
|
160 |
-
pipe.vae = pipe.vae.to(device)
|
161 |
-
pipe.text_encoder = pipe.text_encoder.to(device)
|
162 |
-
pipe.unet = pipe.unet.to(device)
|
163 |
-
pipe.face_clip_encoder = pipe.face_clip_encoder.to(device)
|
164 |
-
|
165 |
-
face_embeds = face_embeds.to(device, dtype=
|
166 |
-
|
167 |
-
# Load IP
|
168 |
-
pipe.load_ip_adapter_faceid_plus(f
|
169 |
pipe.set_face_fidelity_scale(0.8)
|
170 |
-
|
171 |
if randomize_seed:
|
172 |
seed = random.randint(0, MAX_SEED)
|
173 |
-
|
174 |
generator = torch.Generator(device=device).manual_seed(seed)
|
175 |
-
|
176 |
-
#
|
177 |
with torch.no_grad():
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
prompt=prompt,
|
181 |
negative_prompt=negative_prompt,
|
182 |
height=1024,
|
183 |
width=1024,
|
184 |
-
num_inference_steps=num_inference_steps,
|
185 |
-
guidance_scale=guidance_scale,
|
186 |
num_images_per_prompt=1,
|
187 |
generator=generator,
|
188 |
face_crop_image=crop_image,
|
189 |
face_insightface_embeds=face_embeds
|
190 |
-
).images
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
return result, seed
|
200 |
|
|
|
|
|
|
|
201 |
css = """
|
202 |
-
footer {
|
203 |
-
|
204 |
-
}
|
205 |
-
#col-left, #col-right {
|
206 |
-
max-width: 640px;
|
207 |
-
margin: 0 auto;
|
208 |
-
}
|
209 |
-
.gr-button {
|
210 |
-
max-width: 100%;
|
211 |
-
}
|
212 |
"""
|
213 |
|
214 |
-
# Gradio interface
|
215 |
with gr.Blocks(theme="soft", css=css) as Kolors:
|
216 |
gr.HTML(
|
217 |
"""
|
@@ -226,10 +258,13 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
226 |
<img src="https://img.shields.io/badge/Discord-OpenFree%20AI-purple?style=for-the-badge&logo=discord" alt="Discord">
|
227 |
</a>
|
228 |
</div>
|
|
|
|
|
|
|
229 |
</div>
|
230 |
-
"""
|
231 |
)
|
232 |
-
|
233 |
with gr.Row():
|
234 |
with gr.Column(elem_id="col-left"):
|
235 |
prompt = gr.Textbox(
|
@@ -239,7 +274,7 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
239 |
value="A professional portrait photo, high quality"
|
240 |
)
|
241 |
image = gr.Image(label="Upload Face Image", type="pil", height=300)
|
242 |
-
|
243 |
with gr.Accordion("Advanced Settings", open=False):
|
244 |
negative_prompt = gr.Textbox(
|
245 |
label="Negative prompt",
|
@@ -247,15 +282,15 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
247 |
)
|
248 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=66)
|
249 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
250 |
-
guidance_scale = gr.Slider(label="Guidance", minimum=1, maximum=10, step=0.5, value=5)
|
251 |
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, step=5, value=25)
|
252 |
-
|
253 |
button = gr.Button("🎨 Generate Portrait", variant="primary")
|
254 |
-
|
255 |
with gr.Column(elem_id="col-right"):
|
256 |
result = gr.Image(label="Generated Portrait")
|
257 |
seed_used = gr.Number(label="Seed Used", precision=0)
|
258 |
-
|
259 |
button.click(
|
260 |
fn=infer,
|
261 |
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
@@ -263,4 +298,4 @@ with gr.Blocks(theme="soft", css=css) as Kolors:
|
|
263 |
)
|
264 |
|
265 |
if __name__ == "__main__":
|
266 |
-
Kolors.queue(max_size=20).launch(debug=True)
|
|
|
17 |
from PIL import Image
|
18 |
from insightface.app import FaceAnalysis
|
19 |
|
20 |
+
# ---------------------------
|
21 |
+
# Runtime / device settings
|
22 |
+
# ---------------------------
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
26 |
+
|
27 |
if HF_TOKEN:
|
28 |
login(token=HF_TOKEN)
|
29 |
print("Successfully logged in to Hugging Face Hub")
|
30 |
|
|
|
31 |
print("Downloading models...")
|
32 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors", token=HF_TOKEN)
|
33 |
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus", token=HF_TOKEN)
|
34 |
|
35 |
print("Loading models on CPU first...")
|
36 |
|
37 |
+
# ---------------------------
|
38 |
+
# ChatGLM tokenizer pad fix
|
39 |
+
# ---------------------------
|
40 |
original_chatglm_pad = ChatGLMTokenizer._pad if hasattr(ChatGLMTokenizer, '_pad') else None
|
|
|
41 |
def fixed_pad(self, *args, **kwargs):
|
|
|
42 |
kwargs.pop('padding_side', None)
|
43 |
if original_chatglm_pad:
|
44 |
return original_chatglm_pad(self, *args, **kwargs)
|
45 |
else:
|
46 |
return super(ChatGLMTokenizer, self)._pad(*args, **kwargs)
|
|
|
47 |
ChatGLMTokenizer._pad = fixed_pad
|
48 |
|
49 |
+
# ---------------------------
|
50 |
+
# Load Kolors components
|
51 |
+
# NOTE: dtype is fp16 on CUDA, fp32 on CPU to avoid NaNs on CPU
|
52 |
+
# ---------------------------
|
53 |
text_encoder = ChatGLMModel.from_pretrained(
|
54 |
+
f"{ckpt_dir}/text_encoder",
|
55 |
+
torch_dtype=DTYPE,
|
56 |
trust_remote_code=True
|
57 |
)
|
|
|
58 |
tokenizer = ChatGLMTokenizer.from_pretrained(
|
59 |
+
f"{ckpt_dir}/text_encoder",
|
60 |
trust_remote_code=True
|
61 |
)
|
|
|
62 |
vae = AutoencoderKL.from_pretrained(
|
63 |
f"{ckpt_dir}/vae",
|
64 |
+
torch_dtype=DTYPE
|
65 |
)
|
|
|
66 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
|
|
67 |
unet = UNet2DConditionModel.from_pretrained(
|
68 |
f"{ckpt_dir}/unet",
|
69 |
+
torch_dtype=DTYPE
|
70 |
)
|
71 |
|
72 |
+
# CLIP image encoder + processor
|
73 |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
74 |
+
"openai/clip-vit-large-patch14-336",
|
75 |
+
torch_dtype=DTYPE,
|
76 |
use_safetensors=True
|
77 |
)
|
78 |
+
# Prefer from_pretrained for config parity
|
79 |
+
clip_image_processor = CLIPImageProcessor.from_pretrained(
|
80 |
+
"openai/clip-vit-large-patch14-336"
|
81 |
+
)
|
82 |
|
83 |
+
# Create pipeline (initially on CPU to be safe with memory)
|
|
|
|
|
84 |
pipe = StableDiffusionXLPipeline(
|
85 |
vae=vae,
|
86 |
text_encoder=text_encoder,
|
|
|
94 |
|
95 |
print("Models loaded successfully!")
|
96 |
|
97 |
+
# ---------------------------
|
98 |
+
# InsightFace helper (CPU by default; GPU if available)
|
99 |
+
# ---------------------------
|
100 |
+
class FaceInfoGenerator:
|
101 |
+
def __init__(self, root_dir: str = "./.insightface/"):
|
102 |
+
providers = ["CPUExecutionProvider"]
|
103 |
+
# Try to prefer CUDA provider if available in runtime
|
104 |
+
try:
|
105 |
+
import onnxruntime as ort
|
106 |
+
if "CUDAExecutionProvider" in ort.get_available_providers():
|
107 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
108 |
+
except Exception:
|
109 |
+
pass
|
110 |
+
|
111 |
self.app = FaceAnalysis(
|
112 |
+
name="antelopev2",
|
113 |
root=root_dir,
|
114 |
+
providers=providers
|
115 |
)
|
116 |
self.app.prepare(ctx_id=0, det_size=(640, 640))
|
117 |
|
118 |
+
def get_faceinfo_one_img(self, face_image: Image.Image):
|
119 |
if face_image is None:
|
120 |
return None
|
121 |
+
# PIL RGB -> OpenCV BGR
|
122 |
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
|
|
123 |
if len(face_info) == 0:
|
124 |
return None
|
125 |
+
# Largest face
|
126 |
+
face_info = sorted(
|
127 |
+
face_info,
|
128 |
+
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1])
|
129 |
+
)[-1]
|
130 |
return face_info
|
131 |
|
132 |
def face_bbox_to_square(bbox):
|
|
|
134 |
cent_x = (l + r) / 2
|
135 |
cent_y = (t + b) / 2
|
136 |
w, h = r - l, b - t
|
137 |
+
rad = max(w, h) / 2
|
138 |
+
return [cent_x - rad, cent_y - rad, cent_x + rad, cent_y + rad]
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
MAX_SEED = np.iinfo(np.int32).max
|
141 |
face_info_generator = FaceInfoGenerator()
|
142 |
|
143 |
+
# ---------------------------
|
144 |
+
# Inference function
|
145 |
+
# - Uses fp16 autocast only on CUDA
|
146 |
+
# - Ensures dtype/device consistency to avoid NaNs
|
147 |
+
# ---------------------------
|
148 |
@spaces.GPU(duration=120)
|
149 |
+
def infer(
|
150 |
+
prompt,
|
151 |
+
image=None,
|
152 |
+
negative_prompt="low quality, blurry, distorted",
|
153 |
+
seed=66,
|
154 |
+
randomize_seed=False,
|
155 |
+
guidance_scale=5.0,
|
156 |
+
num_inference_steps=25
|
157 |
+
):
|
158 |
if image is None:
|
159 |
gr.Warning("Please upload an image with a face.")
|
160 |
return None, 0
|
161 |
+
|
162 |
+
# Detect face (InsightFace)
|
163 |
face_info = face_info_generator.get_faceinfo_one_img(image)
|
164 |
if face_info is None:
|
165 |
raise gr.Error("No face detected. Please upload an image with a clear face.")
|
166 |
+
|
167 |
+
# Prepare crop for IP-Adapter FaceID
|
168 |
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
169 |
+
crop_image = image.crop(face_bbox_square).resize((336, 336))
|
170 |
+
crop_image = [crop_image] # pipeline expects list
|
|
|
171 |
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
172 |
+
|
173 |
+
# Device move
|
174 |
+
device = torch.device(DEVICE)
|
175 |
global pipe
|
176 |
+
|
177 |
+
# Move modules to device with proper dtype
|
178 |
+
pipe.vae = pipe.vae.to(device, dtype=DTYPE)
|
179 |
+
pipe.text_encoder = pipe.text_encoder.to(device, dtype=DTYPE)
|
180 |
+
pipe.unet = pipe.unet.to(device, dtype=DTYPE)
|
181 |
+
pipe.face_clip_encoder = pipe.face_clip_encoder.to(device, dtype=DTYPE)
|
182 |
+
|
183 |
+
face_embeds = face_embeds.to(device, dtype=DTYPE)
|
184 |
+
|
185 |
+
# Load IP-Adapter weights (FaceID Plus)
|
186 |
+
pipe.load_ip_adapter_faceid_plus(f"{ckpt_dir_faceid}/ipa-faceid-plus.bin", device=device)
|
187 |
pipe.set_face_fidelity_scale(0.8)
|
188 |
+
|
189 |
if randomize_seed:
|
190 |
seed = random.randint(0, MAX_SEED)
|
|
|
191 |
generator = torch.Generator(device=device).manual_seed(seed)
|
192 |
+
|
193 |
+
# Inference: autocast only on CUDA
|
194 |
with torch.no_grad():
|
195 |
+
if DEVICE == "cuda":
|
196 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
197 |
+
images = pipe(
|
198 |
+
prompt=prompt,
|
199 |
+
negative_prompt=negative_prompt,
|
200 |
+
height=1024,
|
201 |
+
width=1024,
|
202 |
+
num_inference_steps=int(num_inference_steps),
|
203 |
+
guidance_scale=float(guidance_scale),
|
204 |
+
num_images_per_prompt=1,
|
205 |
+
generator=generator,
|
206 |
+
face_crop_image=crop_image,
|
207 |
+
face_insightface_embeds=face_embeds
|
208 |
+
).images
|
209 |
+
else:
|
210 |
+
images = pipe(
|
211 |
prompt=prompt,
|
212 |
negative_prompt=negative_prompt,
|
213 |
height=1024,
|
214 |
width=1024,
|
215 |
+
num_inference_steps=int(num_inference_steps),
|
216 |
+
guidance_scale=float(guidance_scale),
|
217 |
num_images_per_prompt=1,
|
218 |
generator=generator,
|
219 |
face_crop_image=crop_image,
|
220 |
face_insightface_embeds=face_embeds
|
221 |
+
).images
|
222 |
+
|
223 |
+
result = images[0]
|
224 |
+
|
225 |
+
# Offload back to CPU to free GPU memory
|
226 |
+
try:
|
227 |
+
pipe.vae = pipe.vae.to("cpu")
|
228 |
+
pipe.text_encoder = pipe.text_encoder.to("cpu")
|
229 |
+
pipe.unet = pipe.unet.to("cpu")
|
230 |
+
pipe.face_clip_encoder = pipe.face_clip_encoder.to("cpu")
|
231 |
+
if DEVICE == "cuda":
|
232 |
+
torch.cuda.empty_cache()
|
233 |
+
except Exception:
|
234 |
+
pass
|
235 |
+
|
236 |
return result, seed
|
237 |
|
238 |
+
# ---------------------------
|
239 |
+
# Gradio UI
|
240 |
+
# ---------------------------
|
241 |
css = """
|
242 |
+
footer { visibility: hidden; }
|
243 |
+
#col-left, #col-right { max-width: 640px; margin: 0 auto; }
|
244 |
+
.gr-button { max-width: 100%; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
"""
|
246 |
|
|
|
247 |
with gr.Blocks(theme="soft", css=css) as Kolors:
|
248 |
gr.HTML(
|
249 |
"""
|
|
|
258 |
<img src="https://img.shields.io/badge/Discord-OpenFree%20AI-purple?style=for-the-badge&logo=discord" alt="Discord">
|
259 |
</a>
|
260 |
</div>
|
261 |
+
<div style='margin-top:8px;font-size:12px;opacity:.7;'>
|
262 |
+
Device: {device}, DType: {dtype}
|
263 |
+
</div>
|
264 |
</div>
|
265 |
+
""".format(device=DEVICE.upper(), dtype=str(DTYPE).replace("torch.", ""))
|
266 |
)
|
267 |
+
|
268 |
with gr.Row():
|
269 |
with gr.Column(elem_id="col-left"):
|
270 |
prompt = gr.Textbox(
|
|
|
274 |
value="A professional portrait photo, high quality"
|
275 |
)
|
276 |
image = gr.Image(label="Upload Face Image", type="pil", height=300)
|
277 |
+
|
278 |
with gr.Accordion("Advanced Settings", open=False):
|
279 |
negative_prompt = gr.Textbox(
|
280 |
label="Negative prompt",
|
|
|
282 |
)
|
283 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=66)
|
284 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
285 |
+
guidance_scale = gr.Slider(label="Guidance", minimum=1, maximum=10, step=0.5, value=5.0)
|
286 |
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, step=5, value=25)
|
287 |
+
|
288 |
button = gr.Button("🎨 Generate Portrait", variant="primary")
|
289 |
+
|
290 |
with gr.Column(elem_id="col-right"):
|
291 |
result = gr.Image(label="Generated Portrait")
|
292 |
seed_used = gr.Number(label="Seed Used", precision=0)
|
293 |
+
|
294 |
button.click(
|
295 |
fn=infer,
|
296 |
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
|
|
298 |
)
|
299 |
|
300 |
if __name__ == "__main__":
|
301 |
+
Kolors.queue(max_size=20).launch(debug=True)
|