Spaces:
Sleeping
Sleeping
import gradio as gr | |
import yfinance as yf | |
from prophet import Prophet | |
from sklearn.linear_model import LinearRegression, BayesianRidge | |
from sklearn.svm import SVR | |
from sklearn.preprocessing import MinMaxScaler | |
from statsmodels.tsa.arima.model import ARIMA | |
#from xgboost import XGBRegressor | |
import pandas as pd | |
import numpy as np | |
from datetime import datetime | |
import plotly.graph_objects as go | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import LSTM, Dense | |
def download_data(ticker, start_date='2010-01-01'): | |
""" | |
์ฃผ์ ๋ฐ์ดํฐ๋ฅผ ๋ค์ด๋ก๋ํ๊ณ ํฌ๋งท์ ์กฐ์ ํ๋ ํจ์ | |
""" | |
data = yf.download(ticker, start=start_date) | |
if data.empty: | |
raise ValueError(f"No data returned for {ticker}") | |
data.reset_index(inplace=True) | |
if 'Adj Close' in data.columns: | |
data = data[['Date', 'Adj Close']] | |
data.rename(columns={'Date': 'ds', 'Adj Close': 'y'}, inplace=True) | |
else: | |
raise ValueError("Expected 'Adj Close' in columns") | |
return data | |
def predict_future_prices(ticker, periods=1825): | |
data = download_data(ticker) | |
# Prophet ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
model_prophet = Prophet(daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=True) | |
model_prophet.fit(data) | |
# ๋ฏธ๋ ๋ฐ์ดํฐ ํ๋ ์ ์์ฑ ๋ฐ ์์ธก | |
future = model_prophet.make_future_dataframe(periods=periods, freq='D') | |
forecast_prophet = model_prophet.predict(future) | |
# Linear Regression ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
model_lr = LinearRegression() | |
X = pd.Series(range(len(data))).values.reshape(-1, 1) | |
y = data['y'].values | |
model_lr.fit(X, y) | |
# ๋ฏธ๋ ๋ฐ์ดํฐ ํ๋ ์ ์์ฑ ๋ฐ ์์ธก | |
future_dates = pd.date_range(start=data['ds'].iloc[-1], periods=periods+1, freq='D')[1:].strftime('%Y-%m-%d') | |
X_future = pd.Series(range(len(data), len(data) + len(future_dates))).values.reshape(-1, 1) | |
future_lr = pd.DataFrame({'ds': future_dates, 'yhat': model_lr.predict(X_future)}) | |
# ARIMA ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
model_arima = ARIMA(data['y'], order=(1, 1, 1)) | |
model_arima_fit = model_arima.fit() | |
forecast_arima = model_arima_fit.forecast(steps=periods) | |
future_arima = pd.DataFrame({'ds': future_dates, 'yhat': forecast_arima}) | |
# LSTM ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
scaler = MinMaxScaler(feature_range=(0, 1)) | |
scaled_data = scaler.fit_transform(data['y'].values.reshape(-1, 1)) | |
X_train, y_train = [], [] | |
for i in range(60, len(scaled_data)): | |
X_train.append(scaled_data[i-60:i, 0]) | |
y_train.append(scaled_data[i, 0]) | |
X_train, y_train = np.array(X_train), np.array(y_train) | |
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) | |
model_lstm = Sequential() | |
model_lstm.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) | |
model_lstm.add(LSTM(units=50)) | |
model_lstm.add(Dense(1)) | |
model_lstm.compile(loss='mean_squared_error', optimizer='adam') | |
model_lstm.fit(X_train, y_train, epochs=10, batch_size=32) | |
pred_lstm = [] | |
last_60_days = scaled_data[-60:] | |
for i in range(periods): | |
X_test = last_60_days.reshape(1, 60, 1) | |
pred = model_lstm.predict(X_test) | |
last_60_days = np.append(last_60_days[1:], pred) | |
pred_lstm.append(pred[0, 0]) | |
pred_lstm = scaler.inverse_transform(np.array(pred_lstm).reshape(-1, 1)) | |
future_lstm = pd.DataFrame({'ds': future_dates[:len(pred_lstm)], 'yhat': pred_lstm.flatten()}) | |
# # XGBoost ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
# model_xgb = XGBRegressor(n_estimators=100, learning_rate=0.1) | |
# model_xgb.fit(X.reshape(-1, 1), y) | |
# future_xgb = pd.DataFrame({'ds': future_dates, 'yhat': model_xgb.predict(X_future)}) | |
# # SVR ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
# model_svr = SVR(kernel='rbf', C=1e3, gamma=0.1) | |
# model_svr.fit(X.reshape(-1, 1), y) | |
# future_svr = pd.DataFrame({'ds': future_dates, 'yhat': model_svr.predict(X_future)}) | |
# # Bayesian Regression ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต | |
# model_bayes = BayesianRidge() | |
# model_bayes.fit(X.reshape(-1, 1), y) | |
# future_bayes = pd.DataFrame({'ds': future_dates, 'yhat': model_bayes.predict(X_future)}) | |
# ์์ธก ๊ฒฐ๊ณผ ๊ทธ๋ํ ์์ฑ | |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d') | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)')) | |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red'))) | |
fig.add_trace(go.Scatter(x=future_arima['ds'], y=future_arima['yhat'], mode='lines', name='ARIMA Forecast (Green)', line=dict(color='green'))) | |
fig.add_trace(go.Scatter(x=future_lstm['ds'], y=future_lstm['yhat'], mode='lines', name='LSTM Forecast (Orange)', line=dict(color='orange'))) | |
# fig.add_trace(go.Scatter(x=future_xgb['ds'], y=future_xgb['yhat'], mode='lines', name='XGBoost Forecast (Purple)', line=dict(color='purple'))) | |
# fig.add_trace(go.Scatter(x=future_svr['ds'], y=future_svr['yhat'], mode='lines', name='SVR Forecast (Brown)', line=dict(color='brown'))) | |
# fig.add_trace(go.Scatter(x=future_bayes['ds'], y=future_bayes['yhat'], mode='lines', name='Bayesian Regression Forecast (Pink)', line=dict(color='pink'))) | |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black'))) | |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']], future_arima[['ds', 'yhat']], future_lstm[['ds', 'yhat']], future_xgb[['ds', 'yhat']], future_svr[['ds', 'yhat']], future_bayes[['ds', 'yhat']] | |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ | |
with gr.Blocks() as app: | |
with gr.Row(): | |
ticker_input = gr.Textbox(value="AAPL", label="Enter Stock Ticker for Forecast") | |
periods_input = gr.Number(value=1825, label="Forecast Period (days)") | |
forecast_button = gr.Button("Generate Forecast") | |
forecast_chart = gr.Plot(label="Forecast Chart") | |
forecast_data_prophet = gr.Dataframe(label="Prophet Forecast Data") | |
forecast_data_lr = gr.Dataframe(label="Linear Regression Forecast Data") | |
forecast_data_arima = gr.Dataframe(label="ARIMA Forecast Data") | |
forecast_data_lstm = gr.Dataframe(label="LSTM Forecast Data") | |
# forecast_data_xgb = gr.Dataframe(label="XGBoost Forecast Data") | |
# forecast_data_svr = gr.Dataframe(label="SVR Forecast Data") | |
# forecast_data_bayes = gr.Dataframe(label="Bayesian Regression Forecast Data") | |
forecast_button.click( | |
fn=predict_future_prices, | |
inputs=[ticker_input, periods_input], | |
outputs=[forecast_chart, forecast_data_prophet, forecast_data_lr, forecast_data_arima, forecast_data_lstm] #,forecast_data_xgb, forecast_data_svr, forecast_data_bayes] | |
) | |
app.launch() |