aiqtech commited on
Commit
1fb9abf
·
verified ·
1 Parent(s): fa183af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -13,7 +13,7 @@ def download_data(ticker, start_date='2010-01-01'):
13
  raise ValueError(f"No data returned for {ticker}")
14
  data.reset_index(inplace=True)
15
  if 'Adj Close' in data.columns:
16
- data = data[['Date', 'Adj Close']]
17
  data.rename(columns={'Date': 'ds', 'Adj Close': 'y'}, inplace=True)
18
  else:
19
  raise ValueError("Expected 'Adj Close' in columns")
@@ -31,13 +31,16 @@ def predict_future_prices(ticker, periods=1825):
31
  forecast = model.predict(future)
32
 
33
  # 예측 결과 그래프 생성
34
- forecast['ds'] = forecast['ds'].dt.strftime('%Y-%m-%d')
35
  fig_main = go.Figure()
36
  fig_main.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], mode='lines', name='Forecast (Blue)'))
37
  fig_main.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
38
 
39
  # 연간 및 주간 계절성 그래프 생성
 
40
  fig_seasonal = model.plot_components(forecast)
 
 
41
  fig_yearly = px.line(x=pd.to_datetime(fig_seasonal[0]['ds']), y=fig_seasonal[0]['yearly'], labels={'x': 'Date', 'y': 'Yearly Trend'})
42
  fig_weekly = px.line(x=fig_seasonal[1]['day'], y=fig_seasonal[1]['weekly'], labels={'x': 'Day of Week', 'y': 'Weekly Trend'})
43
 
 
13
  raise ValueError(f"No data returned for {ticker}")
14
  data.reset_index(inplace=True)
15
  if 'Adj Close' in data.columns:
16
+ data = data[['Date', 'Adj Close']].copy()
17
  data.rename(columns={'Date': 'ds', 'Adj Close': 'y'}, inplace=True)
18
  else:
19
  raise ValueError("Expected 'Adj Close' in columns")
 
31
  forecast = model.predict(future)
32
 
33
  # 예측 결과 그래프 생성
34
+ forecast['ds'] = pd.to_datetime(forecast['ds']) # Ensure 'ds' is datetime type
35
  fig_main = go.Figure()
36
  fig_main.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], mode='lines', name='Forecast (Blue)'))
37
  fig_main.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
38
 
39
  # 연간 및 주간 계절성 그래프 생성
40
+ forecast['ds'] = forecast['ds'].dt.strftime('%Y-%m-%d') # Formatting for display
41
  fig_seasonal = model.plot_components(forecast)
42
+ forecast['ds'] = pd.to_datetime(forecast['ds']) # Revert to datetime type for proper handling in Prophet components
43
+
44
  fig_yearly = px.line(x=pd.to_datetime(fig_seasonal[0]['ds']), y=fig_seasonal[0]['yearly'], labels={'x': 'Date', 'y': 'Yearly Trend'})
45
  fig_weekly = px.line(x=fig_seasonal[1]['day'], y=fig_seasonal[1]['weekly'], labels={'x': 'Day of Week', 'y': 'Weekly Trend'})
46