Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import yfinance as yf
|
3 |
from prophet import Prophet
|
|
|
4 |
import pandas as pd
|
5 |
from datetime import datetime
|
6 |
import plotly.graph_objects as go
|
7 |
|
|
|
|
|
|
|
8 |
def download_data(ticker, start_date='2010-01-01'):
|
9 |
""" 주식 데이터를 다운로드하고 포맷을 조정하는 함수 """
|
10 |
data = yf.download(ticker, start=start_date)
|
@@ -20,37 +24,46 @@ def download_data(ticker, start_date='2010-01-01'):
|
|
20 |
|
21 |
def predict_future_prices(ticker, periods=1825):
|
22 |
data = download_data(ticker)
|
23 |
-
|
24 |
# Prophet 모델 생성 및 학습
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# 미래 데이터 프레임 생성 및 예측
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
# 예측 결과 그래프 생성
|
33 |
-
|
34 |
fig = go.Figure()
|
35 |
-
fig.add_trace(go.Scatter(x=
|
|
|
36 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
37 |
-
|
38 |
-
return fig, forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
|
39 |
|
40 |
-
|
41 |
-
|
|
|
42 |
with gr.Row():
|
43 |
ticker_input = gr.Textbox(value="AAPL", label="Enter Stock Ticker for Forecast")
|
44 |
periods_input = gr.Number(value=1825, label="Forecast Period (days)")
|
45 |
forecast_button = gr.Button("Generate Forecast")
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
forecast_button.click(
|
51 |
fn=predict_future_prices,
|
52 |
inputs=[ticker_input, periods_input],
|
53 |
-
outputs=[forecast_chart,
|
54 |
)
|
55 |
|
56 |
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import yfinance as yf
|
3 |
from prophet import Prophet
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
import pandas as pd
|
6 |
from datetime import datetime
|
7 |
import plotly.graph_objects as go
|
8 |
|
9 |
+
def predict_future_prices(ticker, periods=1825):
|
10 |
+
data = download_data(ticker)
|
11 |
+
|
12 |
def download_data(ticker, start_date='2010-01-01'):
|
13 |
""" 주식 데이터를 다운로드하고 포맷을 조정하는 함수 """
|
14 |
data = yf.download(ticker, start=start_date)
|
|
|
24 |
|
25 |
def predict_future_prices(ticker, periods=1825):
|
26 |
data = download_data(ticker)
|
|
|
27 |
# Prophet 모델 생성 및 학습
|
28 |
+
model_prophet = Prophet(daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=True)
|
29 |
+
model_prophet.fit(data)
|
30 |
+
# 미래 데이터 프레임 생성 및 예측
|
31 |
+
future = model_prophet.make_future_dataframe(periods=periods, freq='D')
|
32 |
+
forecast_prophet = model_prophet.predict(future)
|
33 |
+
# Linear Regression 모델 생성 및 학습
|
34 |
+
model_lr = LinearRegression()
|
35 |
+
X = pd.to_numeric(pd.Series(range(len(data))))
|
36 |
+
y = data['y'].values
|
37 |
+
model_lr.fit(X.values.reshape(-1, 1), y)
|
38 |
# 미래 데이터 프레임 생성 및 예측
|
39 |
+
future_dates = pd.date_range(start=data['ds'].iloc[-1], periods=periods+1, freq='D')[1:]
|
40 |
+
future_lr = pd.DataFrame({'ds': future_dates})
|
41 |
+
future_lr['ds'] = future_lr['ds'].dt.strftime('%Y-%m-%d')
|
42 |
+
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
43 |
+
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
44 |
# 예측 결과 그래프 생성
|
45 |
+
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
46 |
fig = go.Figure()
|
47 |
+
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
|
48 |
+
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
49 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
50 |
+
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']]
|
|
|
51 |
|
52 |
+
css = """footer { visibility: hidden; }"""
|
53 |
+
|
54 |
+
with gr.Blocks(css=css) as app:
|
55 |
with gr.Row():
|
56 |
ticker_input = gr.Textbox(value="AAPL", label="Enter Stock Ticker for Forecast")
|
57 |
periods_input = gr.Number(value=1825, label="Forecast Period (days)")
|
58 |
forecast_button = gr.Button("Generate Forecast")
|
59 |
+
forecast_chart = gr.Plot(label="Forecast Chart")
|
60 |
+
forecast_data_prophet = gr.Dataframe(label="Prophet Forecast Data")
|
61 |
+
forecast_data_lr = gr.Dataframe(label="Linear Regression Forecast Data")
|
62 |
+
|
63 |
forecast_button.click(
|
64 |
fn=predict_future_prices,
|
65 |
inputs=[ticker_input, periods_input],
|
66 |
+
outputs=[forecast_chart, forecast_data_prophet, forecast_data_lr]
|
67 |
)
|
68 |
|
69 |
app.launch()
|