Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -46,23 +46,24 @@ def predict_future_prices(ticker, periods=1825):
|
|
46 |
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
47 |
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
48 |
|
49 |
-
|
50 |
model_np = NeuralProphet()
|
51 |
-
model_np.fit(data, freq='D')
|
52 |
future_np = model_np.make_future_dataframe(data, periods=periods)
|
53 |
forecast_np = model_np.predict(future_np)
|
54 |
-
|
55 |
-
|
56 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
57 |
-
forecast_np['ds'] = forecast_np['ds'].dt.strftime('%Y-%m-%d')
|
58 |
fig = go.Figure()
|
59 |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)', line=dict(color='blue')))
|
60 |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
61 |
fig.add_trace(go.Scatter(x=forecast_np['ds'], y=forecast_np['yhat1'], mode='lines', name='NeuralProphet Forecast (Green)', line=dict(color='green')))
|
62 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
63 |
-
|
64 |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']], forecast_np[['ds', 'yhat1']]
|
65 |
|
|
|
66 |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ
|
67 |
with gr.Blocks() as app:
|
68 |
with gr.Row():
|
|
|
46 |
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
47 |
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
48 |
|
49 |
+
# NeuralProphet ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
50 |
model_np = NeuralProphet()
|
51 |
+
metrics = model_np.fit(data, freq='D')
|
52 |
future_np = model_np.make_future_dataframe(data, periods=periods)
|
53 |
forecast_np = model_np.predict(future_np)
|
54 |
+
|
55 |
+
# ์์ธก ๊ฒฐ๊ณผ ๊ทธ๋ํ ์์ฑ
|
56 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
57 |
+
forecast_np['ds'] = pd.to_datetime(forecast_np['ds']).dt.strftime('%Y-%m-%d')
|
58 |
fig = go.Figure()
|
59 |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)', line=dict(color='blue')))
|
60 |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
61 |
fig.add_trace(go.Scatter(x=forecast_np['ds'], y=forecast_np['yhat1'], mode='lines', name='NeuralProphet Forecast (Green)', line=dict(color='green')))
|
62 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
63 |
+
|
64 |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']], forecast_np[['ds', 'yhat1']]
|
65 |
|
66 |
+
|
67 |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ
|
68 |
with gr.Blocks() as app:
|
69 |
with gr.Row():
|