Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import yfinance as yf
|
3 |
from prophet import Prophet
|
4 |
-
from sklearn.linear_model import LinearRegression
|
|
|
|
|
|
|
|
|
5 |
import pandas as pd
|
|
|
6 |
from datetime import datetime
|
7 |
import plotly.graph_objects as go
|
|
|
|
|
8 |
|
9 |
def download_data(ticker, start_date='2010-01-01'):
|
10 |
"""
|
@@ -45,14 +52,67 @@ def predict_future_prices(ticker, periods=1825):
|
|
45 |
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
46 |
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# ์์ธก ๊ฒฐ๊ณผ ๊ทธ๋ํ ์์ฑ
|
49 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
50 |
fig = go.Figure()
|
51 |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
|
52 |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
|
|
|
|
|
|
|
|
|
|
53 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
54 |
|
55 |
-
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']]
|
56 |
|
57 |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ
|
58 |
with gr.Blocks() as app:
|
@@ -64,11 +124,16 @@ with gr.Blocks() as app:
|
|
64 |
forecast_chart = gr.Plot(label="Forecast Chart")
|
65 |
forecast_data_prophet = gr.Dataframe(label="Prophet Forecast Data")
|
66 |
forecast_data_lr = gr.Dataframe(label="Linear Regression Forecast Data")
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
forecast_button.click(
|
69 |
fn=predict_future_prices,
|
70 |
inputs=[ticker_input, periods_input],
|
71 |
-
outputs=[forecast_chart, forecast_data_prophet, forecast_data_lr]
|
72 |
)
|
73 |
|
74 |
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import yfinance as yf
|
3 |
from prophet import Prophet
|
4 |
+
from sklearn.linear_model import LinearRegression, BayesianRidge
|
5 |
+
from sklearn.svm import SVR
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from statsmodels.tsa.arima.model import ARIMA
|
8 |
+
from xgboost import XGBRegressor
|
9 |
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
from datetime import datetime
|
12 |
import plotly.graph_objects as go
|
13 |
+
from tensorflow.keras.models import Sequential
|
14 |
+
from tensorflow.keras.layers import LSTM, Dense
|
15 |
|
16 |
def download_data(ticker, start_date='2010-01-01'):
|
17 |
"""
|
|
|
52 |
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
53 |
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
54 |
|
55 |
+
# ARIMA ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
56 |
+
model_arima = ARIMA(data['y'], order=(1, 1, 1))
|
57 |
+
model_arima_fit = model_arima.fit()
|
58 |
+
forecast_arima = model_arima_fit.forecast(steps=periods)
|
59 |
+
future_arima = pd.DataFrame({'ds': future_dates, 'yhat': forecast_arima})
|
60 |
+
|
61 |
+
# LSTM ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
62 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
63 |
+
scaled_data = scaler.fit_transform(data['y'].values.reshape(-1, 1))
|
64 |
+
X_train, y_train = [], []
|
65 |
+
for i in range(60, len(scaled_data)):
|
66 |
+
X_train.append(scaled_data[i-60:i, 0])
|
67 |
+
y_train.append(scaled_data[i, 0])
|
68 |
+
X_train, y_train = np.array(X_train), np.array(y_train)
|
69 |
+
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
|
70 |
+
|
71 |
+
model_lstm = Sequential()
|
72 |
+
model_lstm.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
|
73 |
+
model_lstm.add(LSTM(units=50))
|
74 |
+
model_lstm.add(Dense(1))
|
75 |
+
model_lstm.compile(loss='mean_squared_error', optimizer='adam')
|
76 |
+
model_lstm.fit(X_train, y_train, epochs=10, batch_size=32)
|
77 |
+
|
78 |
+
last_60_days = data['y'][-60:].values
|
79 |
+
scaled_last_60_days = scaler.transform(last_60_days.reshape(-1, 1))
|
80 |
+
X_test = []
|
81 |
+
X_test.append(scaled_last_60_days)
|
82 |
+
X_test = np.array(X_test)
|
83 |
+
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
|
84 |
+
pred_lstm = model_lstm.predict(X_test)
|
85 |
+
pred_lstm = scaler.inverse_transform(pred_lstm)
|
86 |
+
future_lstm = pd.DataFrame({'ds': future_dates[:periods], 'yhat': pred_lstm.flatten()})
|
87 |
+
|
88 |
+
# XGBoost ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
89 |
+
model_xgb = XGBRegressor(n_estimators=100, learning_rate=0.1)
|
90 |
+
model_xgb.fit(X.values.reshape(-1, 1), y)
|
91 |
+
future_xgb = pd.DataFrame({'ds': future_dates, 'yhat': model_xgb.predict(X_future.values.reshape(-1, 1))})
|
92 |
+
|
93 |
+
# SVR ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
94 |
+
model_svr = SVR(kernel='rbf', C=1e3, gamma=0.1)
|
95 |
+
model_svr.fit(X.values.reshape(-1, 1), y)
|
96 |
+
future_svr = pd.DataFrame({'ds': future_dates, 'yhat': model_svr.predict(X_future.values.reshape(-1, 1))})
|
97 |
+
|
98 |
+
# Bayesian Regression ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
99 |
+
model_bayes = BayesianRidge()
|
100 |
+
model_bayes.fit(X.values.reshape(-1, 1), y)
|
101 |
+
future_bayes = pd.DataFrame({'ds': future_dates, 'yhat': model_bayes.predict(X_future.values.reshape(-1, 1))})
|
102 |
+
|
103 |
# ์์ธก ๊ฒฐ๊ณผ ๊ทธ๋ํ ์์ฑ
|
104 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
105 |
fig = go.Figure()
|
106 |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
|
107 |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
108 |
+
fig.add_trace(go.Scatter(x=future_arima['ds'], y=future_arima['yhat'], mode='lines', name='ARIMA Forecast (Green)', line=dict(color='green')))
|
109 |
+
fig.add_trace(go.Scatter(x=future_lstm['ds'], y=future_lstm['yhat'], mode='lines', name='LSTM Forecast (Orange)', line=dict(color='orange')))
|
110 |
+
fig.add_trace(go.Scatter(x=future_xgb['ds'], y=future_xgb['yhat'], mode='lines', name='XGBoost Forecast (Purple)', line=dict(color='purple')))
|
111 |
+
fig.add_trace(go.Scatter(x=future_svr['ds'], y=future_svr['yhat'], mode='lines', name='SVR Forecast (Brown)', line=dict(color='brown')))
|
112 |
+
fig.add_trace(go.Scatter(x=future_bayes['ds'], y=future_bayes['yhat'], mode='lines', name='Bayesian Regression Forecast (Pink)', line=dict(color='pink')))
|
113 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
114 |
|
115 |
+
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']], future_arima[['ds', 'yhat']], future_lstm[['ds', 'yhat']], future_xgb[['ds', 'yhat']], future_svr[['ds', 'yhat']], future_bayes[['ds', 'yhat']]
|
116 |
|
117 |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ
|
118 |
with gr.Blocks() as app:
|
|
|
124 |
forecast_chart = gr.Plot(label="Forecast Chart")
|
125 |
forecast_data_prophet = gr.Dataframe(label="Prophet Forecast Data")
|
126 |
forecast_data_lr = gr.Dataframe(label="Linear Regression Forecast Data")
|
127 |
+
forecast_data_arima = gr.Dataframe(label="ARIMA Forecast Data")
|
128 |
+
forecast_data_lstm = gr.Dataframe(label="LSTM Forecast Data")
|
129 |
+
forecast_data_xgb = gr.Dataframe(label="XGBoost Forecast Data")
|
130 |
+
forecast_data_svr = gr.Dataframe(label="SVR Forecast Data")
|
131 |
+
forecast_data_bayes = gr.Dataframe(label="Bayesian Regression Forecast Data")
|
132 |
|
133 |
forecast_button.click(
|
134 |
fn=predict_future_prices,
|
135 |
inputs=[ticker_input, periods_input],
|
136 |
+
outputs=[forecast_chart, forecast_data_prophet, forecast_data_lr, forecast_data_arima, forecast_data_lstm, forecast_data_xgb, forecast_data_svr, forecast_data_bayes]
|
137 |
)
|
138 |
|
139 |
app.launch()
|