Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -86,22 +86,22 @@ def predict_future_prices(ticker, periods=1825):
|
|
86 |
pred_lstm = scaler.inverse_transform(np.array(pred_lstm).reshape(-1, 1))
|
87 |
future_lstm = pd.DataFrame({'ds': future_dates[:len(pred_lstm)], 'yhat': pred_lstm.flatten()})
|
88 |
|
89 |
-
|
90 |
-
# XGBoost ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
91 |
model_xgb = XGBRegressor(n_estimators=100, learning_rate=0.1)
|
92 |
-
model_xgb.fit(X.
|
93 |
-
future_xgb = pd.DataFrame({'ds': future_dates, 'yhat': model_xgb.predict(X_future
|
94 |
|
95 |
# SVR ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
96 |
model_svr = SVR(kernel='rbf', C=1e3, gamma=0.1)
|
97 |
-
model_svr.fit(X.
|
98 |
-
future_svr = pd.DataFrame({'ds': future_dates, 'yhat': model_svr.predict(X_future
|
99 |
|
100 |
# Bayesian Regression ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
101 |
model_bayes = BayesianRidge()
|
102 |
-
model_bayes.fit(X.
|
103 |
-
future_bayes = pd.DataFrame({'ds': future_dates, 'yhat': model_bayes.predict(X_future
|
104 |
|
|
|
105 |
# ์์ธก ๊ฒฐ๊ณผ ๊ทธ๋ํ ์์ฑ
|
106 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
107 |
fig = go.Figure()
|
@@ -116,6 +116,7 @@ def predict_future_prices(ticker, periods=1825):
|
|
116 |
|
117 |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']], future_arima[['ds', 'yhat']], future_lstm[['ds', 'yhat']], future_xgb[['ds', 'yhat']], future_svr[['ds', 'yhat']], future_bayes[['ds', 'yhat']]
|
118 |
|
|
|
119 |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ
|
120 |
with gr.Blocks() as app:
|
121 |
with gr.Row():
|
|
|
86 |
pred_lstm = scaler.inverse_transform(np.array(pred_lstm).reshape(-1, 1))
|
87 |
future_lstm = pd.DataFrame({'ds': future_dates[:len(pred_lstm)], 'yhat': pred_lstm.flatten()})
|
88 |
|
89 |
+
# XGBoost ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
|
|
90 |
model_xgb = XGBRegressor(n_estimators=100, learning_rate=0.1)
|
91 |
+
model_xgb.fit(X.reshape(-1, 1), y)
|
92 |
+
future_xgb = pd.DataFrame({'ds': future_dates, 'yhat': model_xgb.predict(X_future)})
|
93 |
|
94 |
# SVR ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
95 |
model_svr = SVR(kernel='rbf', C=1e3, gamma=0.1)
|
96 |
+
model_svr.fit(X.reshape(-1, 1), y)
|
97 |
+
future_svr = pd.DataFrame({'ds': future_dates, 'yhat': model_svr.predict(X_future)})
|
98 |
|
99 |
# Bayesian Regression ๋ชจ๋ธ ์์ฑ ๋ฐ ํ์ต
|
100 |
model_bayes = BayesianRidge()
|
101 |
+
model_bayes.fit(X.reshape(-1, 1), y)
|
102 |
+
future_bayes = pd.DataFrame({'ds': future_dates, 'yhat': model_bayes.predict(X_future)})
|
103 |
|
104 |
+
|
105 |
# ์์ธก ๊ฒฐ๊ณผ ๊ทธ๋ํ ์์ฑ
|
106 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
107 |
fig = go.Figure()
|
|
|
116 |
|
117 |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']], future_arima[['ds', 'yhat']], future_lstm[['ds', 'yhat']], future_xgb[['ds', 'yhat']], future_svr[['ds', 'yhat']], future_bayes[['ds', 'yhat']]
|
118 |
|
119 |
+
|
120 |
# Gradio ์ธํฐํ์ด์ค ์ค์ ๋ฐ ์คํ
|
121 |
with gr.Blocks() as app:
|
122 |
with gr.Row():
|