File size: 9,668 Bytes
e90574b
6ef48c6
 
e90574b
 
 
6ef48c6
e90574b
 
 
6ef48c6
 
 
 
 
 
e90574b
 
6ef48c6
 
 
 
 
 
e90574b
edda836
531d6f9
 
e90574b
6ef48c6
e90574b
9d978bc
 
e90574b
 
531d6f9
 
 
 
 
 
9d978bc
6ef48c6
9d978bc
6ef48c6
9d978bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef48c6
 
 
 
9d978bc
 
 
6ef48c6
 
e90574b
6ef48c6
9d978bc
6ef48c6
 
e90574b
6ef48c6
9d978bc
 
 
 
6ef48c6
 
 
 
 
 
 
 
9d978bc
 
 
 
6ef48c6
 
 
 
 
 
9d978bc
 
 
 
 
 
 
 
 
6ef48c6
9d978bc
6ef48c6
 
 
 
9d978bc
 
 
 
 
 
 
6ef48c6
9d978bc
e90574b
 
6ef48c6
9d978bc
6ef48c6
 
 
e90574b
6ef48c6
 
 
e90574b
9d978bc
6ef48c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d978bc
 
 
 
 
 
6ef48c6
9d978bc
6ef48c6
 
9d978bc
 
 
6ef48c6
 
9d978bc
6ef48c6
 
 
 
 
 
 
9d978bc
6ef48c6
 
9d978bc
e90574b
6ef48c6
 
 
 
 
 
 
 
 
 
 
 
9d978bc
 
 
 
 
 
6ef48c6
 
 
 
 
 
 
9d978bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef48c6
 
 
 
 
 
9d978bc
6ef48c6
 
 
 
 
 
 
 
 
 
 
 
 
 
9d978bc
 
 
 
 
 
6ef48c6
9d978bc
6ef48c6
 
 
 
 
 
9d978bc
6ef48c6
e90574b
 
 
6ef48c6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
Web Search MCP Server - Feed LLMs with fresh sources
====================================================

Prerequisites
-------------
$ pip install "gradio[mcp]" httpx trafilatura python-dateutil limits

Environment
-----------
export SERPER_API_KEY="YOUR-KEY-HERE"

Usage
-----
python app_mcp.py
Then connect to: http://localhost:7860/gradio_api/mcp/sse
"""

import os
import asyncio
from typing import Optional
import httpx
import trafilatura
import gradio as gr
from dateutil import parser as dateparser
from limits import parse
from limits.aio.storage import MemoryStorage
from limits.aio.strategies import MovingWindowRateLimiter

# Configuration
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
SERPER_SEARCH_ENDPOINT = "https://google.serper.dev/search"
SERPER_NEWS_ENDPOINT = "https://google.serper.dev/news"
HEADERS = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}

# Rate limiting
storage = MemoryStorage()
limiter = MovingWindowRateLimiter(storage)
rate_limit = parse("200/hour")


async def search_web(query: str, search_type: str = "search", num_results: Optional[int] = 4) -> str:
    """
    Search the web for information or fresh news, returning extracted content.

    This tool can perform two types of searches:
    - "search" (default): General web search for diverse, relevant content from various sources
    - "news": Specifically searches for fresh news articles and breaking stories

    Use "news" mode when looking for:
    - Breaking news or very recent events
    - Time-sensitive information
    - Current affairs and latest developments
    - Today's/this week's happenings

    Use "search" mode (default) for:
    - General information and research
    - Technical documentation or guides
    - Historical information
    - Diverse perspectives from various sources

    Args:
        query (str): The search query. This is REQUIRED. Examples: "apple inc earnings",
                    "climate change 2024", "AI developments"
        search_type (str): Type of search. This is OPTIONAL. Default is "search".
                          Options: "search" (general web search) or "news" (fresh news articles).
                          Use "news" for time-sensitive, breaking news content.
        num_results (int): Number of results to fetch. This is OPTIONAL. Default is 4.
                          Range: 1-20. More results = more context but longer response time.

    Returns:
        str: Formatted text containing extracted content with metadata (title,
             source, date, URL, and main text) for each result, separated by dividers.
             Returns error message if API key is missing or search fails.

    Examples:
        - search_web("OpenAI GPT-5", "news", 5) - Get 5 fresh news articles about OpenAI
        - search_web("python tutorial", "search") - Get 4 general results about Python (default count)
        - search_web("stock market today", "news", 10) - Get 10 news articles about today's market
        - search_web("machine learning basics") - Get 4 general search results (all defaults)
    """
    if not SERPER_API_KEY:
        return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."

    # Validate and constrain num_results
    if num_results is None:
        num_results = 4
    num_results = max(1, min(20, num_results))
    
    # Validate search_type
    if search_type not in ["search", "news"]:
        search_type = "search"

    try:
        # Check rate limit
        if not await limiter.hit(rate_limit, "global"):
            return "Error: Rate limit exceeded. Please try again later (limit: 200 requests per hour)."

        # Select endpoint based on search type
        endpoint = SERPER_NEWS_ENDPOINT if search_type == "news" else SERPER_SEARCH_ENDPOINT
        
        # Prepare payload
        payload = {"q": query, "num": num_results}
        if search_type == "news":
            payload["type"] = "news"
            payload["page"] = 1
        
        async with httpx.AsyncClient(timeout=15) as client:
            resp = await client.post(endpoint, headers=HEADERS, json=payload)

        if resp.status_code != 200:
            return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."

        # Extract results based on search type
        if search_type == "news":
            results = resp.json().get("news", [])
        else:
            results = resp.json().get("organic", [])
        
        if not results:
            return (
                f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
            )

        # Fetch HTML content concurrently
        urls = [r["link"] for r in results]
        async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
            tasks = [client.get(u) for u in urls]
            responses = await asyncio.gather(*tasks, return_exceptions=True)

        # Extract and format content
        chunks = []
        successful_extractions = 0

        for meta, response in zip(results, responses):
            if isinstance(response, Exception):
                continue

            # Extract main text content
            body = trafilatura.extract(
                response.text, include_formatting=False, include_comments=False
            )

            if not body:
                continue

            successful_extractions += 1

            # Parse and format date
            try:
                # For news results, date is in 'date' field; for search results, it might be in 'snippet'
                date_str = meta.get("date", "")
                if date_str:
                    date_iso = dateparser.parse(date_str, fuzzy=True).strftime("%Y-%m-%d")
                else:
                    date_iso = "Unknown"
            except Exception:
                date_iso = "Unknown"

            # Format the chunk
            # For search results, source might be in 'displayLink' or domain
            source = meta.get('source', meta.get('displayLink', meta['link'].split('/')[2]))
            
            chunk = (
                f"## {meta['title']}\n"
                f"**Source:** {source}   "
                f"**Date:** {date_iso}\n"
                f"**URL:** {meta['link']}\n\n"
                f"{body.strip()}\n"
            )
            chunks.append(chunk)

        if not chunks:
            return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."

        result = "\n---\n".join(chunks)
        summary = f"Successfully extracted content from {successful_extractions} out of {len(results)} {search_type} results for query: '{query}'\n\n---\n\n"

        return summary + result

    except Exception as e:
        return f"Error occurred while searching: {str(e)}. Please try again or check your query."


# Create Gradio interface
with gr.Blocks(title="Web Search MCP Server") as demo:
    gr.Markdown(
        """
        # 🔍 Web Search MCP Server
        
        This MCP server provides web search capabilities to LLMs. It can perform general web searches
        or specifically search for fresh news articles, extracting the main content from results.
        
        **Search Types:**
        - **General Search**: Diverse results from various sources (blogs, docs, articles, etc.)
        - **News Search**: Fresh news articles and breaking stories from news sources
        
        **Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can 
        also test it manually below.
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            query_input = gr.Textbox(
                label="Search Query",
                placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
                info="Required: Enter your search query",
            )
        with gr.Column(scale=1):
            search_type_input = gr.Radio(
                choices=["search", "news"],
                value="search",
                label="Search Type",
                info="Choose search type",
            )
    
    with gr.Row():
        num_results_input = gr.Slider(
            minimum=1,
            maximum=20,
            value=4,
            step=1,
            label="Number of Results",
            info="Optional: How many results to fetch (default: 4)",
        )

    output = gr.Textbox(
        label="Extracted Content",
        lines=25,
        max_lines=50,
        info="The extracted article content will appear here",
    )

    search_button = gr.Button("Search", variant="primary")

    # Add examples
    gr.Examples(
        examples=[
            ["OpenAI GPT-5 latest developments", "news", 5],
            ["python programming tutorial", "search", 4],
            ["stock market today breaking news", "news", 6],
            ["machine learning algorithms explained", "search", 8],
            ["climate change 2024 latest news", "news", 4],
            ["web development best practices", "search", 4],
        ],
        inputs=[query_input, search_type_input, num_results_input],
        outputs=output,
        fn=search_web,
        cache_examples=False,
    )

    search_button.click(
        fn=search_web, inputs=[query_input, search_type_input, num_results_input], outputs=output
    )


if __name__ == "__main__":
    # Launch with MCP server enabled
    # The MCP endpoint will be available at: http://localhost:7860/gradio_api/mcp/sse
    demo.launch(mcp_server=True, show_api=True)