Spaces:
Running
Running
File size: 27,139 Bytes
bccac95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import datetime as dt
import json
from io import StringIO
# Helper functions for data processing
def format_large_number(num):
"""Format large numbers to K, M, B, T"""
if num is None or pd.isna(num):
return "N/A"
if isinstance(num, str):
return num
if abs(num) >= 1_000_000_000_000:
return f"{num / 1_000_000_000_000:.2f}T"
elif abs(num) >= 1_000_000_000:
return f"{num / 1_000_000_000:.2f}B"
elif abs(num) >= 1_000_000:
return f"{num / 1_000_000:.2f}M"
elif abs(num) >= 1_000:
return f"{num / 1_000:.2f}K"
else:
return f"{num:.2f}"
def get_ticker_info(ticker_symbol):
"""Get basic information about a ticker"""
try:
ticker = yf.Ticker(ticker_symbol)
info = ticker.info
# Create a more readable format
important_info = {
"Name": info.get("shortName", "N/A"),
"Sector": info.get("sector", "N/A"),
"Industry": info.get("industry", "N/A"),
"Country": info.get("country", "N/A"),
"Market Cap": format_large_number(info.get("marketCap", "N/A")),
"Current Price": info.get("currentPrice", info.get("regularMarketPrice", "N/A")),
"52 Week High": info.get("fiftyTwoWeekHigh", "N/A"),
"52 Week Low": info.get("fiftyTwoWeekLow", "N/A"),
"Website": info.get("website", "N/A"),
"Business Summary": info.get("longBusinessSummary", "N/A")
}
# Convert to formatted string
info_str = ""
for key, value in important_info.items():
info_str += f"**{key}**: {value}\n\n"
return info_str
except Exception as e:
return f"Error retrieving ticker info: {str(e)}"
def get_historical_data(ticker_symbol, period, interval):
"""Get historical price data and create a plotly chart"""
try:
ticker = yf.Ticker(ticker_symbol)
history = ticker.history(period=period, interval=interval)
if history.empty:
return "No historical data available for this ticker", None
# Create Plotly figure
fig = go.Figure()
fig.add_trace(go.Candlestick(
x=history.index,
open=history['Open'],
high=history['High'],
low=history['Low'],
close=history['Close'],
name='Price'
))
# Add volume as bar chart
fig.add_trace(go.Bar(
x=history.index,
y=history['Volume'],
name='Volume',
yaxis='y2',
marker_color='rgba(0, 100, 80, 0.4)'
))
# Layout with secondary y-axis
fig.update_layout(
title=f'{ticker_symbol} Price History',
yaxis_title='Price',
yaxis2=dict(
title='Volume',
overlaying='y',
side='right',
showgrid=False
),
xaxis_rangeslider_visible=False,
height=500
)
return f"Successfully retrieved historical data for {ticker_symbol}", fig
except Exception as e:
return f"Error retrieving historical data: {str(e)}", None
def get_financial_data(ticker_symbol, statement_type, period_type):
"""Get financial statements data"""
try:
ticker = yf.Ticker(ticker_symbol)
if statement_type == "Income Statement":
if period_type == "Annual":
data = ticker.income_stmt
else: # Quarterly
data = ticker.quarterly_income_stmt
elif statement_type == "Balance Sheet":
if period_type == "Annual":
data = ticker.balance_sheet
else: # Quarterly
data = ticker.quarterly_balance_sheet
elif statement_type == "Cash Flow":
if period_type == "Annual":
data = ticker.cashflow
else: # Quarterly
data = ticker.quarterly_cashflow
if data is None or data.empty:
return f"No {statement_type} data available for {ticker_symbol}"
# Format the DataFrame for display
data = data.fillna("N/A")
# Format date columns to be more readable
data.columns = [col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col) for col in data.columns]
# HTML representation will be more readable in the UI
return data.to_html(classes="table table-striped")
except Exception as e:
return f"Error retrieving financial data: {str(e)}"
def get_company_news(ticker_symbol):
"""Get latest news for the company"""
try:
ticker = yf.Ticker(ticker_symbol)
news = ticker.news
if not news:
return "No recent news available for this ticker"
# Format news items
formatted_news = ""
for i, item in enumerate(news[:5]): # Show top 5 news items
# Extract from nested content structure if present
news_item = item.get('content', item)
# Get title
title = news_item.get('title', 'No title')
# Get publisher
publisher = "Unknown publisher"
if 'provider' in news_item and isinstance(news_item['provider'], dict):
publisher = news_item['provider'].get('displayName', 'Unknown publisher')
# Get link
link = "#"
if 'clickThroughUrl' in news_item and isinstance(news_item['clickThroughUrl'], dict):
link = news_item['clickThroughUrl'].get('url', '#')
elif 'canonicalUrl' in news_item and isinstance(news_item['canonicalUrl'], dict):
link = news_item['canonicalUrl'].get('url', '#')
# Get date
publish_date = 'Unknown date'
if 'pubDate' in news_item:
publish_date = news_item['pubDate']
formatted_news += f"### {i+1}. {title}\n\n"
formatted_news += f"**Source**: {publisher} | **Date**: {publish_date}\n\n"
formatted_news += f"**Link**: [Read full article]({link})\n\n"
# Add description if available
if 'description' in news_item:
description = news_item['description']
# Limit description length and strip HTML tags
if len(description) > 200:
description = description[:200] + "..."
formatted_news += f"{description}\n\n"
formatted_news += "---\n\n"
return formatted_news
except Exception as e:
return f"Error retrieving news: {str(e)}"
def get_analyst_recommendations(ticker_symbol):
"""Get analyst recommendations"""
try:
ticker = yf.Ticker(ticker_symbol)
recommendations = ticker.recommendations
if recommendations is None or recommendations.empty:
return "No analyst recommendations available for this ticker"
# Create a figure for visualization
fig = plt.figure(figsize=(10, 6))
# Count occurrences of each recommendation
rec_counts = recommendations['To Grade'].value_counts()
# Create a pie chart
plt.pie(rec_counts, labels=rec_counts.index, autopct='%1.1f%%',
shadow=True, startangle=90, colors=['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0'])
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
plt.title(f'Analyst Recommendations for {ticker_symbol}')
return f"Found {len(recommendations)} analyst recommendations for {ticker_symbol}", fig
except Exception as e:
return f"Error retrieving analyst recommendations: {str(e)}", None
def get_options_data(ticker_symbol, expiration_date=None):
"""Get options chain data for the ticker"""
try:
ticker = yf.Ticker(ticker_symbol)
# Get available expiration dates
expirations = ticker.options
if not expirations:
return "No options data available for this ticker", None
# If no expiration date is provided or the provided one is invalid, use the first available
if expiration_date is None or expiration_date not in expirations:
expiration_date = expirations[0]
# Get options chain for the selected expiration date
options = ticker.option_chain(expiration_date)
calls = options.calls
puts = options.puts
# Prepare data for visualization
strike_prices = sorted(list(set(calls['strike'].tolist() + puts['strike'].tolist())))
call_volumes = []
put_volumes = []
for strike in strike_prices:
call_vol = calls[calls['strike'] == strike]['volume'].sum()
put_vol = puts[puts['strike'] == strike]['volume'].sum()
call_volumes.append(call_vol)
put_volumes.append(put_vol)
# Create figure for visualization
fig = plt.figure(figsize=(12, 6))
# Plot the data
plt.bar(np.array(strike_prices) - 0.2, call_volumes, width=0.4, label='Calls', color='green', alpha=0.6)
plt.bar(np.array(strike_prices) + 0.2, put_volumes, width=0.4, label='Puts', color='red', alpha=0.6)
plt.xlabel('Strike Price')
plt.ylabel('Volume')
plt.title(f'Options Volume for {ticker_symbol} (Expiry: {expiration_date})')
plt.legend()
plt.grid(True, alpha=0.3)
# Format for readability
current_price = ticker.info.get('regularMarketPrice', ticker.info.get('currentPrice', None))
if current_price:
plt.axvline(x=current_price, color='blue', linestyle='--', label=f'Current Price: {current_price}')
plt.legend()
# Create summary table data
summary = f"""
### Options Summary for {ticker_symbol} (Expiry: {expiration_date})
**Available Expiration Dates:** {', '.join(expirations)}
#### Calls Summary:
- Count: {len(calls)}
- Total Volume: {calls['volume'].sum():,}
- Average Implied Volatility: {calls['impliedVolatility'].mean():.2%}
#### Puts Summary:
- Count: {len(puts)}
- Total Volume: {puts['volume'].sum():,}
- Average Implied Volatility: {puts['impliedVolatility'].mean():.2%}
"""
return summary, fig
except Exception as e:
return f"Error retrieving options data: {str(e)}", None
def get_institutional_holders(ticker_symbol):
"""Get institutional holders of the stock"""
try:
ticker = yf.Ticker(ticker_symbol)
holders = ticker.institutional_holders
if holders is None or holders.empty:
return "No institutional holders data available for this ticker", None
# Create figure for visualization
fig = plt.figure(figsize=(12, 6))
# Sort by percentage held
holders = holders.sort_values(by='% Out', ascending=False)
# Take top 10 holders for visualization
top_holders = holders.head(10)
# Plot the data
plt.barh(top_holders['Holder'], top_holders['% Out'] * 100)
plt.xlabel('Percentage Held (%)')
plt.ylabel('Institution')
plt.title(f'Top Institutional Holders of {ticker_symbol}')
plt.grid(True, alpha=0.3)
# Format x-axis as percentage
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1f}%'))
# Format the DataFrame for display
holders_html = holders.to_html(classes="table table-striped")
return holders_html, fig
except Exception as e:
return f"Error retrieving institutional holders: {str(e)}", None
def get_sector_industry_info(ticker_symbol):
"""Get sector and industry information for the ticker"""
try:
ticker = yf.Ticker(ticker_symbol)
info = ticker.info
sector_key = info.get('sectorKey')
industry_key = info.get('industryKey')
if not sector_key or not industry_key:
return "Sector or industry information not available for this ticker"
try:
# Get sector information
sector = yf.Sector(sector_key)
sector_info = f"""
### Sector Information
**Name:** {sector.name}
**Key:** {sector.key}
**Symbol:** {sector.symbol}
#### Overview
{sector.overview}
#### Top Companies in {sector.name} Sector
"""
for company in sector.top_companies[:5]: # Show top 5 companies
sector_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n"
# Get industry information
industry = yf.Industry(industry_key)
industry_info = f"""
### Industry Information
**Name:** {industry.name}
**Key:** {industry.key}
**Sector:** {industry.sector_name}
#### Top Performing Companies in {industry.name}
"""
for company in industry.top_performing_companies[:5]: # Show top 5 companies
industry_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n"
return sector_info + industry_info
except Exception as e:
return f"Error retrieving sector/industry details: {str(e)}"
except Exception as e:
return f"Error retrieving sector/industry information: {str(e)}"
def search_stocks(query, max_results=10):
"""Search for stocks using the YF Search API"""
try:
# First try with the standard approach
search_results = yf.Search(query, max_results=max_results)
quotes = search_results.quotes
if not quotes:
return "No search results found"
# Format the results
formatted_results = "### Search Results\n\n"
for quote in quotes:
symbol = quote.get('symbol', 'N/A')
name = quote.get('shortname', quote.get('longname', 'N/A'))
exchange = quote.get('exchange', 'N/A')
quote_type = quote.get('quoteType', 'N/A').capitalize()
formatted_results += f"**{symbol}** - {name}\n"
formatted_results += f"Exchange: {exchange} | Type: {quote_type}\n\n"
return formatted_results
except AttributeError as e:
if "has no attribute 'update'" in str(e):
# Alternative: Use the Ticker directly for basic information
try:
# If search fails, try to get info directly for the symbol
if len(query.strip()) <= 5: # Likely a symbol
ticker = yf.Ticker(query.strip())
info = ticker.info
formatted_results = "### Direct Ticker Results\n\n"
formatted_results += f"**{query.strip()}** - {info.get('shortName', 'N/A')}\n"
formatted_results += f"Exchange: {info.get('exchange', 'N/A')} | "
formatted_results += f"Type: {info.get('quoteType', 'N/A').capitalize()}\n\n"
return formatted_results
else:
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab."
except:
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab."
else:
return f"Error searching stocks: {str(e)}"
except Exception as e:
return f"Error searching stocks: {str(e)}"
def get_multi_ticker_comparison(ticker_symbols, period="1y"):
"""Compare multiple tickers in a single chart"""
try:
if not ticker_symbols:
return "Please enter at least one ticker symbol", None
# Split input string into list of ticker symbols
tickers = [t.strip() for t in ticker_symbols.split() if t.strip()]
if not tickers:
return "Please enter at least one ticker symbol", None
# Download data for all tickers
data = yf.download(tickers, period=period, group_by='ticker')
if data.empty:
return "No data available for the provided tickers", None
# For a single ticker, the structure is different
if len(tickers) == 1:
ticker = tickers[0]
price_data = data['Close']
price_data.name = ticker
price_data = pd.DataFrame(price_data)
else:
# Extract closing prices for each ticker
price_data = pd.DataFrame()
for ticker in tickers:
try:
if (ticker, 'Close') in data.columns:
price_data[ticker] = data[ticker]['Close']
except:
continue
if price_data.empty:
return "Could not retrieve closing price data for the provided tickers", None
# Normalize the data to start at 100 for fair comparison
normalized_data = price_data.copy()
for col in normalized_data.columns:
normalized_data[col] = normalized_data[col] / normalized_data[col].iloc[0] * 100
# Create figure for visualization
fig = plt.figure(figsize=(12, 6))
for col in normalized_data.columns:
plt.plot(normalized_data.index, normalized_data[col], label=col)
plt.xlabel('Date')
plt.ylabel('Normalized Price (Base = 100)')
plt.title(f'Comparative Performance ({period})')
plt.legend()
plt.grid(True, alpha=0.3)
# Calculate performance metrics
performance = {}
for ticker in price_data.columns:
start_price = price_data[ticker].iloc[0]
end_price = price_data[ticker].iloc[-1]
pct_change = (end_price - start_price) / start_price * 100
performance[ticker] = pct_change
# Create a summary of the performance
summary = "### Performance Summary\n\n"
for ticker, pct in sorted(performance.items(), key=lambda x: x[1], reverse=True):
summary += f"**{ticker}**: {pct:.2f}%\n\n"
return summary, fig
except Exception as e:
return f"Error comparing tickers: {str(e)}", None
def get_market_status():
"""Get current market status and summary"""
try:
# Get US market status
us_market = yf.Market("US")
status = us_market.status
if not status:
return "Unable to retrieve market status"
# Format the response
market_info = "### Market Status\n\n"
market_state = status.get('marketState', 'Unknown')
trading_status = "Open" if market_state == "REGULAR" else "Closed"
market_info += f"**US Market Status:** {trading_status} ({market_state})\n\n"
# Get summary for different markets
markets = ["US", "EUROPE", "ASIA", "CRYPTOCURRENCIES"]
for market_id in markets:
try:
market = yf.Market(market_id)
summary = market.summary
if summary is None:
market_info += f"### {market_id} Market Summary\n\nNo data available\n\n---\n\n"
continue
market_info += f"### {market_id} Market Summary\n\n"
# Make sure we handle the summary data correctly, regardless of its type
summary_items = []
if isinstance(summary, list):
summary_items = summary[:5] # Get first 5 items
elif hasattr(summary, '__getitem__'):
try:
summary_items = summary[:5] # Try to get first 5 items
except:
# If slicing fails, try to convert to list first
try:
summary_items = list(summary)[:5]
except:
summary_items = []
# Display market indices
if not summary_items:
market_info += "No summary data available\n\n"
else:
for item in summary_items:
if not isinstance(item, dict):
continue
symbol = item.get('symbol', 'N/A')
name = item.get('shortName', item.get('longName', 'N/A'))
price = item.get('regularMarketPrice', 'N/A')
change = item.get('regularMarketChangePercent', 0)
# Format change with color indicator
change_text = f"{change:.2f}%" if isinstance(change, (int, float)) else change
if isinstance(change, (int, float)):
if change > 0:
change_text = f"π’ +{change_text}"
elif change < 0:
change_text = f"π΄ {change_text}"
market_info += f"**{name} ({symbol}):** {price} ({change_text})\n\n"
market_info += "---\n\n"
except Exception as e:
market_info += f"### {market_id} Market Summary\n\nError retrieving {market_id} market summary: {str(e)}\n\n---\n\n"
return market_info
except Exception as e:
return f"Error retrieving market status: {str(e)}"
# Gradio UI components
with gr.Blocks(title="YFinance Explorer") as app:
gr.Markdown("# YFinance Explorer\nA comprehensive tool to test all features of the yfinance library")
with gr.Tab("Single Ticker Analysis"):
with gr.Row():
ticker_input = gr.Textbox(label="Enter Ticker Symbol", placeholder="e.g. AAPL, MSFT, GOOG", value="AAPL")
ticker_submit = gr.Button("Analyze")
with gr.Tabs():
with gr.Tab("Overview"):
ticker_info_output = gr.Markdown()
with gr.Tab("Price History"):
with gr.Row():
period_dropdown = gr.Dropdown(
choices=["1d", "5d", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"],
value="1y",
label="Period"
)
interval_dropdown = gr.Dropdown(
choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "1d", "5d", "1wk", "1mo", "3mo"],
value="1d",
label="Interval"
)
history_status = gr.Markdown()
history_plot = gr.Plot()
with gr.Tab("Financials"):
with gr.Row():
statement_dropdown = gr.Dropdown(
choices=["Income Statement", "Balance Sheet", "Cash Flow"],
value="Income Statement",
label="Financial Statement"
)
period_type_dropdown = gr.Dropdown(
choices=["Annual", "Quarterly"],
value="Annual",
label="Period Type"
)
financial_data_output = gr.HTML()
with gr.Tab("News"):
news_output = gr.Markdown()
with gr.Tab("Multi-Ticker Comparison"):
with gr.Row():
multi_ticker_input = gr.Textbox(label="Enter Ticker Symbols (space separated)", placeholder="e.g. AAPL MSFT GOOG", value="AAPL MSFT GOOG")
comparison_period = gr.Dropdown(
choices=["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"],
value="1y",
label="Comparison Period"
)
compare_button = gr.Button("Compare")
comparison_status = gr.Markdown()
comparison_plot = gr.Plot()
with gr.Tab("Market Status"):
market_status_button = gr.Button("Get Market Status")
market_status_output = gr.Markdown()
with gr.Tab("Stock Search"):
with gr.Row():
search_input = gr.Textbox(label="Search Term", placeholder="Enter company name or ticker")
max_results_slider = gr.Slider(minimum=5, maximum=30, value=10, step=5, label="Max Results")
search_button = gr.Button("Search")
search_results = gr.Markdown()
# Event handlers
ticker_submit.click(
fn=get_ticker_info,
inputs=[ticker_input],
outputs=[ticker_info_output]
)
ticker_submit.click(
fn=get_historical_data,
inputs=[ticker_input, period_dropdown, interval_dropdown],
outputs=[history_status, history_plot]
)
ticker_submit.click(
fn=get_financial_data,
inputs=[ticker_input, statement_dropdown, period_type_dropdown],
outputs=[financial_data_output]
)
ticker_submit.click(
fn=get_company_news,
inputs=[ticker_input],
outputs=[news_output]
)
compare_button.click(
fn=get_multi_ticker_comparison,
inputs=[multi_ticker_input, comparison_period],
outputs=[comparison_status, comparison_plot]
)
market_status_button.click(
fn=get_market_status,
inputs=[],
outputs=[market_status_output]
)
search_button.click(
fn=search_stocks,
inputs=[search_input, max_results_slider],
outputs=[search_results]
)
# Update statement and interval options based on selections
def update_interval_choices(period):
if period in ["1d", "5d"]:
return gr.Dropdown.update(choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h"], value="1m")
else:
return gr.Dropdown.update(choices=["1d", "5d", "1wk", "1mo", "3mo"], value="1d")
period_dropdown.change(
fn=update_interval_choices,
inputs=[period_dropdown],
outputs=[interval_dropdown]
)
if __name__ == "__main__":
app.launch() |