Spaces:
Runtime error
Runtime error
Clémentine
commited on
Commit
·
217b585
1
Parent(s):
4aff44e
wip adding symbols to model types
Browse files- app.py +11 -0
- src/assets/text_content.py +3 -2
- src/auto_leaderboard/model_metadata_type.py +25 -8
- src/utils_display.py +5 -4
app.py
CHANGED
|
@@ -179,6 +179,7 @@ def add_new_eval(
|
|
| 179 |
precision: str,
|
| 180 |
private: bool,
|
| 181 |
weight_type: str,
|
|
|
|
| 182 |
):
|
| 183 |
precision = precision.split(" ")[0]
|
| 184 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
@@ -209,6 +210,7 @@ def add_new_eval(
|
|
| 209 |
"weight_type": weight_type,
|
| 210 |
"status": "PENDING",
|
| 211 |
"submitted_time": current_time,
|
|
|
|
| 212 |
}
|
| 213 |
|
| 214 |
user_name = ""
|
|
@@ -396,6 +398,14 @@ with demo:
|
|
| 396 |
max_choices=1,
|
| 397 |
interactive=True,
|
| 398 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
weight_type = gr.Dropdown(
|
| 400 |
choices=["Original", "Delta", "Adapter"],
|
| 401 |
label="Weights type",
|
|
@@ -419,6 +429,7 @@ with demo:
|
|
| 419 |
precision,
|
| 420 |
private,
|
| 421 |
weight_type,
|
|
|
|
| 422 |
],
|
| 423 |
submission_result,
|
| 424 |
)
|
|
|
|
| 179 |
precision: str,
|
| 180 |
private: bool,
|
| 181 |
weight_type: str,
|
| 182 |
+
model_type: str,
|
| 183 |
):
|
| 184 |
precision = precision.split(" ")[0]
|
| 185 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
|
|
| 210 |
"weight_type": weight_type,
|
| 211 |
"status": "PENDING",
|
| 212 |
"submitted_time": current_time,
|
| 213 |
+
"model_type": model_type,
|
| 214 |
}
|
| 215 |
|
| 216 |
user_name = ""
|
|
|
|
| 398 |
max_choices=1,
|
| 399 |
interactive=True,
|
| 400 |
)
|
| 401 |
+
model_type = gr.Dropdown(
|
| 402 |
+
choices=["pretrained", "fine-tuned", "with RL"],
|
| 403 |
+
label="Model type",
|
| 404 |
+
multiselect=False,
|
| 405 |
+
value="pretrained",
|
| 406 |
+
max_choices=1,
|
| 407 |
+
interactive=True,
|
| 408 |
+
)
|
| 409 |
weight_type = gr.Dropdown(
|
| 410 |
choices=["Original", "Delta", "Adapter"],
|
| 411 |
label="Weights type",
|
|
|
|
| 429 |
precision,
|
| 430 |
private,
|
| 431 |
weight_type,
|
| 432 |
+
model_type
|
| 433 |
],
|
| 434 |
submission_result,
|
| 435 |
)
|
src/assets/text_content.py
CHANGED
|
@@ -75,6 +75,7 @@ With the plethora of large language models (LLMs) and chatbots being released we
|
|
| 75 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
| 76 |
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
|
| 77 |
|
|
|
|
| 78 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
| 79 |
|
| 80 |
# Some good practices before submitting a model
|
|
@@ -140,13 +141,13 @@ These models will be automatically evaluated on the 🤗 cluster.
|
|
| 140 |
"""
|
| 141 |
|
| 142 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 143 |
-
CITATION_BUTTON_TEXT = r"""
|
|
|
|
| 144 |
author = {Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf},
|
| 145 |
title = {Open LLM Leaderboard},
|
| 146 |
year = {2023},
|
| 147 |
publisher = {Hugging Face},
|
| 148 |
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
|
| 149 |
-
|
| 150 |
}
|
| 151 |
@software{eval-harness,
|
| 152 |
author = {Gao, Leo and
|
|
|
|
| 75 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
| 76 |
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
|
| 77 |
|
| 78 |
+
For all these evaluations, a higher score is a better score.
|
| 79 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
| 80 |
|
| 81 |
# Some good practices before submitting a model
|
|
|
|
| 141 |
"""
|
| 142 |
|
| 143 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 144 |
+
CITATION_BUTTON_TEXT = r"""
|
| 145 |
+
@misc{open-llm-leaderboard,
|
| 146 |
author = {Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf},
|
| 147 |
title = {Open LLM Leaderboard},
|
| 148 |
year = {2023},
|
| 149 |
publisher = {Hugging Face},
|
| 150 |
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
|
|
|
|
| 151 |
}
|
| 152 |
@software{eval-harness,
|
| 153 |
author = {Gao, Leo and
|
src/auto_leaderboard/model_metadata_type.py
CHANGED
|
@@ -1,10 +1,17 @@
|
|
|
|
|
| 1 |
from enum import Enum
|
| 2 |
from typing import Dict, List
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
class ModelType(Enum):
|
| 5 |
-
PT = "pretrained"
|
| 6 |
-
SFT = "finetuned"
|
| 7 |
-
RL = "with RL"
|
| 8 |
|
| 9 |
|
| 10 |
TYPE_METADATA: Dict[str, ModelType] = {
|
|
@@ -160,13 +167,23 @@ TYPE_METADATA: Dict[str, ModelType] = {
|
|
| 160 |
|
| 161 |
def get_model_type(leaderboard_data: List[dict]):
|
| 162 |
for model_data in leaderboard_data:
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
if any([i in model_data["model_name_for_query"] for i in ["finetuned", "-ft-"]]):
|
| 166 |
-
model_data["Type"] = ModelType.SFT
|
|
|
|
| 167 |
elif any([i in model_data["model_name_for_query"] for i in ["pretrained"]]):
|
| 168 |
-
model_data["Type"] = ModelType.PT
|
|
|
|
| 169 |
elif any([i in model_data["model_name_for_query"] for i in ["-rl-", "-rlhf-"]]):
|
| 170 |
-
model_data["Type"] = ModelType.RL
|
|
|
|
| 171 |
|
| 172 |
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
from typing import Dict, List
|
| 4 |
|
| 5 |
+
@dataclass
|
| 6 |
+
class ModelInfo:
|
| 7 |
+
name: str
|
| 8 |
+
symbol: str # emoji
|
| 9 |
+
|
| 10 |
+
|
| 11 |
class ModelType(Enum):
|
| 12 |
+
PT = ModelInfo(name="pretrained", symbol="🟢")
|
| 13 |
+
SFT = ModelInfo(name="finetuned", symbol="🔶")
|
| 14 |
+
RL = ModelInfo(name="with RL", symbol="🟦")
|
| 15 |
|
| 16 |
|
| 17 |
TYPE_METADATA: Dict[str, ModelType] = {
|
|
|
|
| 167 |
|
| 168 |
def get_model_type(leaderboard_data: List[dict]):
|
| 169 |
for model_data in leaderboard_data:
|
| 170 |
+
# Init
|
| 171 |
+
model_data["Type name"] = "N/A"
|
| 172 |
+
model_data["Type"] = ""
|
| 173 |
+
|
| 174 |
+
# Stored information
|
| 175 |
+
if model_data["model_name_for_query"] in TYPE_METADATA:
|
| 176 |
+
model_data["Type name"] = TYPE_METADATA[model_data["model_name_for_query"]].value.name
|
| 177 |
+
model_data["Type"] = TYPE_METADATA[model_data["model_name_for_query"]].value.symbol
|
| 178 |
+
else: # Supposed from the name
|
| 179 |
if any([i in model_data["model_name_for_query"] for i in ["finetuned", "-ft-"]]):
|
| 180 |
+
model_data["Type name"] = ModelType.SFT.value.name
|
| 181 |
+
model_data["Type"] = ModelType.SFT.value.symbol
|
| 182 |
elif any([i in model_data["model_name_for_query"] for i in ["pretrained"]]):
|
| 183 |
+
model_data["Type name"] = ModelType.PT.value.name
|
| 184 |
+
model_data["Type"] = ModelType.PT.value.symbol
|
| 185 |
elif any([i in model_data["model_name_for_query"] for i in ["-rl-", "-rlhf-"]]):
|
| 186 |
+
model_data["Type name"] = ModelType.RL.value.name
|
| 187 |
+
model_data["Type"] = ModelType.RL.value.symbol
|
| 188 |
|
| 189 |
|
src/utils_display.py
CHANGED
|
@@ -14,13 +14,14 @@ def fields(raw_class):
|
|
| 14 |
|
| 15 |
@dataclass(frozen=True)
|
| 16 |
class AutoEvalColumn: # Auto evals column
|
|
|
|
| 17 |
model = ColumnContent("Model", "markdown", True)
|
| 18 |
average = ColumnContent("Average ⬆️", "number", True)
|
| 19 |
-
arc = ColumnContent("ARC
|
| 20 |
-
hellaswag = ColumnContent("HellaSwag
|
| 21 |
-
mmlu = ColumnContent("MMLU
|
| 22 |
truthfulqa = ColumnContent("TruthfulQA (MC) ⬆️", "number", True)
|
| 23 |
-
model_type = ColumnContent("Type", "str", False)
|
| 24 |
precision = ColumnContent("Precision", "str", False, True)
|
| 25 |
license = ColumnContent("Hub License", "str", False)
|
| 26 |
params = ColumnContent("#Params (B)", "number", False)
|
|
|
|
| 14 |
|
| 15 |
@dataclass(frozen=True)
|
| 16 |
class AutoEvalColumn: # Auto evals column
|
| 17 |
+
model_type_symbol = ColumnContent("Type", "str", True)
|
| 18 |
model = ColumnContent("Model", "markdown", True)
|
| 19 |
average = ColumnContent("Average ⬆️", "number", True)
|
| 20 |
+
arc = ColumnContent("ARC", "number", True)
|
| 21 |
+
hellaswag = ColumnContent("HellaSwag", "number", True)
|
| 22 |
+
mmlu = ColumnContent("MMLU", "number", True)
|
| 23 |
truthfulqa = ColumnContent("TruthfulQA (MC) ⬆️", "number", True)
|
| 24 |
+
model_type = ColumnContent("Type name", "str", False)
|
| 25 |
precision = ColumnContent("Precision", "str", False, True)
|
| 26 |
license = ColumnContent("Hub License", "str", False)
|
| 27 |
params = ColumnContent("#Params (B)", "number", False)
|