Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,266 Bytes
c77435d 8a142a6 c77435d 2d7d23d 06ddd30 3f599cd 8a142a6 ce4dda5 7198068 8a142a6 7198068 d958e2a 8a142a6 3f599cd 06ddd30 7198068 06ddd30 2d7d23d 8a142a6 2d7d23d 8a142a6 c77435d 8a142a6 c77435d 8a142a6 2d7d23d ce4dda5 2d7d23d ce4dda5 665e5a3 ce4dda5 3f599cd 347797e ce4dda5 7198068 ce4dda5 665e5a3 2d7d23d 347797e 2d7d23d 347797e 7198068 347797e 2d7d23d a8243a3 2d7d23d 347797e 2d7d23d 347797e 2d7d23d 8a142a6 665e5a3 ce4dda5 665e5a3 8a142a6 c77435d 8a142a6 c77435d 8a142a6 2d7d23d 8a142a6 ce4dda5 8a142a6 ce4dda5 8a142a6 e101547 3ff8c65 e101547 3ff8c65 e101547 06ddd30 e101547 347797e e101547 347797e e101547 a8243a3 8a142a6 2d7d23d a8243a3 2d7d23d e101547 2d7d23d a8243a3 8a142a6 ce4dda5 8a142a6 f8f724c d958e2a b17563b 7198068 3f599cd 7198068 d958e2a 8a142a6 7198068 8a142a6 e101547 d958e2a 8a142a6 2d7d23d d958e2a 8a142a6 7198068 8a142a6 35c466b 8a142a6 e101547 8a142a6 e101547 7198068 e101547 8a142a6 e101547 7198068 e101547 8a142a6 d958e2a 8a142a6 347797e 8a142a6 d958e2a 8a142a6 d958e2a 8a142a6 d958e2a 8a142a6 c4fe1db 2d7d23d 8a142a6 d958e2a ce4dda5 8a142a6 c77435d 8a142a6 7198068 8a142a6 2d7d23d ce4dda5 2d7d23d 8a142a6 ce4dda5 2d7d23d 15dd199 347797e c4fe1db 7198068 3ff8c65 7198068 c4fe1db 347797e 2d7d23d ce4dda5 15dd199 2d7d23d 8a142a6 ce4dda5 2d7d23d c77435d ce4dda5 a8243a3 c77435d 8a142a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import gradio as gr
import random
import pandas as pd
import os
import threading
import time
import numpy as np
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
from utils.shared import generation_interrupt
feedback_options = {
"left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
"right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
"tie": ["Model A: Complete", "Model A: Accurate", "Model A: Relevant", "Model A: Well written", "Model A: Correct refusal (if applicable)",
"Model B: Complete", "Model B: Accurate", "Model B: Relevant", "Model B: Well written", "Model B: Corrent refusal (if applicable)"],
"neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)",
"Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"]
}
def weighted_sample_without_replacement(population, weights, k=2):
"""
Performs a weighted random sampling without replacement.
Args:
population: The list of items to sample from
weights: The weight for each item
k: Number of items to sample
Returns:
A list of k sampled items
"""
if len(population) <= k:
return population
# Convert weights to numpy array for efficient operations
weights = np.array(weights)
# Create a copy of the population and weights
remaining_population = population.copy()
remaining_weights = weights.copy()
selected = []
for _ in range(k):
# Normalize weights so they sum to 1
normalized_weights = remaining_weights / remaining_weights.sum()
# Randomly select one item based on weights
selected_idx = np.random.choice(len(remaining_population), p=normalized_weights)
# Add the selected item to our result
selected.append(remaining_population[selected_idx])
# Remove the selected item from the pool
remaining_population.pop(selected_idx)
remaining_weights = np.delete(remaining_weights, selected_idx)
return selected
def load_context(set_interrupt=False):
if set_interrupt:
generation_interrupt.set()
time.sleep(0.2)
generation_interrupt.clear()
example = get_random_example()
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
show_full = False
context_html = get_context_html(example, show_full=show_full)
return [
example,
gr.update(value=example['question']),
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=context_html),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
show_full
]
def load_leaderboard():
results = load_leaderboard_data()
leaderboard_html = generate_leaderboard_html(results)
return leaderboard_html
def generate_model_summaries(example):
result = {
"model_a": "",
"model_b": "",
"summary_a": "",
"summary_b": "",
"completed": False
}
if generation_interrupt.is_set():
return result
try:
# Get current leaderboard data to determine model usage counts
leaderboard_data = load_leaderboard_data()
# Calculate weights using inverse weighting
# Weight = K / (games_played + C)
K = 100 # Scaling factor
C = 5 # Smoothing constant
weights = []
model_list = []
for model in model_names:
# Get games played for the model, default to 0 if not found
games_played = leaderboard_data["games_played"].get(model, 0)
# Calculate weight using inverse formula
weight = K / (games_played + C)
weights.append(weight)
model_list.append(model)
# Select two models using weighted sampling without replacement
selected_models = weighted_sample_without_replacement(model_list, weights, k=2)
m_a_name, m_b_name = selected_models
result["model_a"] = m_a_name
result["model_b"] = m_b_name
s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
if not generation_interrupt.is_set():
result["summary_a"] = s_a
result["summary_b"] = s_b
result["completed"] = bool(s_a and s_b)
except Exception as e:
print(f"Error in generation: {e}")
return result
def process_generation_result(result):
if not result["completed"] or not result["summary_a"] or not result["summary_b"]:
return [
result.get("model_a", ""),
result.get("model_b", ""),
result.get("summary_a", ""),
result.get("summary_b", ""),
None, [], False, load_leaderboard_data(),
gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")),
gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
buttons_interactive = bool(result["summary_a"] and result["summary_b"])
agg_results = load_leaderboard_data()
return [
result["model_a"], result["model_b"],
result["summary_a"], result["summary_b"],
None, [], False, agg_results,
gr.update(value=result["summary_a"]),
gr.update(value=result["summary_b"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
def process_example(example):
result = generate_model_summaries(example)
return process_generation_result(result)
def select_vote_improved(winner_choice):
feedback_choices = feedback_options.get(winner_choice, [])
btn_a_classes = ["vote-button"]
btn_b_classes = ["vote-button"]
btn_tie_classes = ["vote-button"]
btn_neither_classes = ["vote-button", "vote-button-neither"]
if winner_choice == 'left':
btn_a_classes.append("selected")
elif winner_choice == 'right':
btn_b_classes.append("selected")
elif winner_choice == 'tie':
btn_tie_classes.append("selected")
elif winner_choice == 'neither':
btn_neither_classes.append("selected")
return [
winner_choice,
gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
gr.update(visible=True),
gr.update(interactive=True),
gr.update(elem_classes=btn_a_classes),
gr.update(elem_classes=btn_b_classes),
gr.update(elem_classes=btn_tie_classes),
gr.update(elem_classes=btn_neither_classes)
]
def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
if winner is None:
print("Warning: Submit called without a winner selected.")
return {}
save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)
def show_loading_state():
"""Show loading state while fetching new content and reset UI elements"""
return [
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(interactive=False, elem_classes=["vote-button"]), # Reset styling
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(visible=False), # feedback_section
gr.update(interactive=False), # submit_button
gr.update(visible=False), # results_reveal_area
gr.update(interactive=False), # random_question_btn
None # Reset selected_winner
]
def handle_new_example_click():
return load_context(set_interrupt=True)[0]
def update_ui_for_new_context(example):
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
return [
gr.update(value=example['question']),
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=get_context_html(example, False)),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
False
]
def cleanup_on_disconnect():
print(f"Browser disconnected. Cleaning up resources...")
generation_interrupt.set()
with gr.Blocks(theme=gr.themes.Default(
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.slate
)) as demo:
css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
with open(css_path, 'r') as f:
css_content = f.read()
gr.HTML(f"<style>{css_content}</style>")
unload_js = """
<script>
window.addEventListener('beforeunload', function(e) {
navigator.sendBeacon('/cleanup?session_id=' + window.gradioClientState.session_hash);
});
</script>
"""
gr.HTML(unload_js)
current_example = gr.State({})
model_a_name = gr.State("")
model_b_name = gr.State("")
summary_a_text = gr.State("")
summary_b_text = gr.State("")
selected_winner = gr.State(None)
feedback_list = gr.State([])
show_results_state = gr.State(False)
results_agg = gr.State(load_leaderboard_data())
show_full_context = gr.State(False)
with gr.Tabs() as tabs:
with gr.TabItem("Arena", id="arena-tab"):
gr.Markdown("# Small Language Model RAG Summarization/Generation Arena")
gr.Markdown("""
ποΈ This arena evaluates SLMs on document QA tasks with retrieved context. They should provide **grounded, comprehensive** answers or **properly decline** when information is insufficient.
π Insturction: 1. **Review the query and context**. 2. **Compare answers** generated by two different models. 3. **Vote for the better response** or select 'Tie/Neither' if appropriate.
""")
gr.HTML("<hr>")
with gr.Column(elem_id="main-interface-area") as main_interface_area:
with gr.Row(elem_id="query-title-row"):
gr.Markdown("### π¬ Query - Question About Document Content", elem_classes="section-heading")
with gr.Row(elem_id="query-container"):
with gr.Row(elem_classes="query-box-row"):
query_display = gr.Markdown(value="Loading question...", elem_classes="query-text", elem_id="query-section")
random_question_btn = gr.Button("π Try a New Question", elem_classes="query-button")
context_description = gr.Markdown("", elem_classes="context-description")
gr.HTML("<hr>")
with gr.Row(elem_id="context-header-row"):
gr.Markdown("### π Context - Retrieved Content from the Document", elem_classes="context-title")
context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
context_display = gr.HTML(value="Loading context...", label="Context Chunks")
gr.Markdown("---")
gr.Markdown("### π Compare Models - Are these Grounded, Complete Answers or Correct Rejections?", elem_classes="section-heading")
with gr.Row(elem_id="summary-containers"):
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
summary_a_display = gr.Textbox(
label="Model A",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False,
elem_id="summary-a-display"
)
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
summary_b_display = gr.Textbox(
label="Model B",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False,
elem_id="summary-b-display"
)
gr.HTML("<hr>")
gr.Markdown("### π
Cast Your Vote", elem_classes="section-heading")
with gr.Row():
vote_button_a = gr.Button("β¬
οΈ Summary A is Better", elem_classes=["vote-button"], interactive=False)
vote_button_tie = gr.Button("π€ Tie / Equally Good", elem_classes=["vote-button"], interactive=False)
vote_button_b = gr.Button("β‘οΈ Summary B is Better", elem_classes=["vote-button"], interactive=False)
vote_button_neither = gr.Button("β Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False)
with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button")
with gr.Column(visible=False) as results_reveal_area:
gr.Markdown("---")
gr.Markdown("### β
Vote Submitted!", elem_classes="section-heading")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model A was:", elem_classes="section-heading")
model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
with gr.Column(scale=1):
gr.Markdown("### Model B was:", elem_classes="section-heading")
model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
gr.HTML("<hr>")
with gr.Row(elem_classes=["control-buttons"]):
try_another_btn = gr.Button("π Try Another Question", elem_id="try-another-btn")
with gr.TabItem("Leaderboard", id="leaderboard-tab"):
gr.Markdown("# RAG SLM Summarizer/Generator Leaderboard", elem_classes="orange-title")
gr.Markdown("View performance statistics for all models ranked by Elo rating.")
with gr.Group(elem_id="leaderboard-info"):
gr.Markdown("""### About Elo Ratings
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The Β± value shows the statistical confidence interval (95%)
""")
results_table_display = gr.HTML(label="Model Performance")
context_toggle_btn.click(
fn=toggle_context_display,
inputs=[current_example, show_full_context],
outputs=[show_full_context, context_display, context_toggle_btn]
)
demo.load(
fn=load_context,
inputs=[],
outputs=[current_example, query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
demo.load(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display]
)
for btn in [random_question_btn, try_another_btn]:
btn.click(
fn=show_loading_state,
inputs=[],
outputs=[
summary_a_display, summary_b_display,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither,
feedback_section, submit_button, results_reveal_area, random_question_btn,
selected_winner # Add selected_winner to reset vote state
]
).then(
fn=handle_new_example_click,
inputs=[],
outputs=[current_example]
).then(
fn=update_ui_for_new_context,
inputs=[current_example],
outputs=[query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
for btn, choice in zip(
[vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
['left', 'right', 'tie', 'neither']
):
btn.click(
fn=lambda choice=choice: select_vote_improved(choice),
inputs=None,
outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
)
feedback_checkboxes.change(
fn=update_feedback,
inputs=[feedback_checkboxes],
outputs=[feedback_list]
)
submit_button.click(
fn=handle_vote_submission,
inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
outputs=[show_results_state, results_agg, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes,
feedback_section, submit_button, results_reveal_area,
random_question_btn, results_table_display, main_interface_area,
context_toggle_btn, model_a_reveal, model_b_reveal]
)
tabs.select(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display],
api_name="refresh_leaderboard"
)
demo.unload(cleanup_on_disconnect)
if __name__ == "__main__":
demo.launch(debug=True) |