File size: 21,266 Bytes
c77435d
 
8a142a6
c77435d
2d7d23d
06ddd30
3f599cd
8a142a6
 
 
ce4dda5
 
7198068
8a142a6
 
 
 
7198068
 
d958e2a
 
8a142a6
 
3f599cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ddd30
 
 
7198068
06ddd30
2d7d23d
8a142a6
2d7d23d
8a142a6
 
 
c77435d
8a142a6
 
c77435d
8a142a6
2d7d23d
 
 
 
 
 
 
 
ce4dda5
 
 
 
2d7d23d
ce4dda5
665e5a3
 
 
 
 
 
 
 
 
 
 
ce4dda5
3f599cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347797e
 
 
 
ce4dda5
 
 
 
 
7198068
ce4dda5
 
665e5a3
 
 
2d7d23d
347797e
2d7d23d
347797e
 
 
 
 
 
 
7198068
347797e
 
 
2d7d23d
 
a8243a3
2d7d23d
 
 
 
 
347797e
 
2d7d23d
 
 
 
 
 
 
347797e
 
 
 
2d7d23d
 
 
 
 
 
8a142a6
665e5a3
ce4dda5
 
665e5a3
8a142a6
 
 
c77435d
8a142a6
 
 
 
c77435d
8a142a6
 
 
 
 
 
 
 
 
 
2d7d23d
 
 
 
 
 
 
 
8a142a6
 
ce4dda5
8a142a6
 
 
 
ce4dda5
 
8a142a6
e101547
3ff8c65
e101547
 
 
3ff8c65
 
 
 
 
 
 
 
 
e101547
 
 
06ddd30
e101547
 
347797e
 
 
 
e101547
 
347797e
e101547
 
 
 
 
a8243a3
 
 
 
8a142a6
 
 
 
2d7d23d
a8243a3
2d7d23d
 
e101547
2d7d23d
a8243a3
 
 
 
 
 
 
 
 
8a142a6
 
 
 
 
 
 
 
 
ce4dda5
8a142a6
 
 
 
f8f724c
d958e2a
b17563b
7198068
3f599cd
7198068
 
d958e2a
 
8a142a6
 
 
7198068
8a142a6
 
 
e101547
d958e2a
8a142a6
 
2d7d23d
d958e2a
 
8a142a6
7198068
8a142a6
 
 
 
 
35c466b
8a142a6
e101547
8a142a6
 
e101547
 
 
 
 
7198068
e101547
 
8a142a6
 
e101547
 
 
 
 
7198068
e101547
 
8a142a6
d958e2a
 
 
8a142a6
347797e
 
 
 
8a142a6
 
 
d958e2a
8a142a6
 
 
 
 
 
 
d958e2a
8a142a6
 
d958e2a
8a142a6
 
c4fe1db
2d7d23d
8a142a6
 
 
 
d958e2a
ce4dda5
 
 
 
 
 
 
 
 
 
 
 
 
8a142a6
 
 
 
 
c77435d
 
8a142a6
7198068
8a142a6
2d7d23d
 
 
ce4dda5
2d7d23d
 
 
 
 
 
8a142a6
 
ce4dda5
 
 
 
 
 
2d7d23d
15dd199
347797e
c4fe1db
7198068
 
 
3ff8c65
 
7198068
c4fe1db
347797e
2d7d23d
 
 
 
 
 
 
 
ce4dda5
15dd199
2d7d23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a142a6
 
 
 
 
 
 
ce4dda5
 
2d7d23d
 
 
 
 
c77435d
ce4dda5
 
 
 
 
 
 
a8243a3
 
c77435d
8a142a6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import gradio as gr
import random
import pandas as pd
import os
import threading
import time
import numpy as np
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
from utils.shared import generation_interrupt

feedback_options = {
    "left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
    "right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
    "tie": ["Model A: Complete", "Model A: Accurate", "Model A: Relevant", "Model A: Well written", "Model A: Correct refusal (if applicable)", 
           "Model B: Complete", "Model B: Accurate", "Model B: Relevant", "Model B: Well written", "Model B: Corrent refusal (if applicable)"],
    "neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)",
               "Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"]
}

def weighted_sample_without_replacement(population, weights, k=2):
    """
    Performs a weighted random sampling without replacement.
    
    Args:
        population: The list of items to sample from
        weights: The weight for each item
        k: Number of items to sample
        
    Returns:
        A list of k sampled items
    """
    if len(population) <= k:
        return population
    
    # Convert weights to numpy array for efficient operations
    weights = np.array(weights)
    
    # Create a copy of the population and weights
    remaining_population = population.copy()
    remaining_weights = weights.copy()
    
    selected = []
    
    for _ in range(k):
        # Normalize weights so they sum to 1
        normalized_weights = remaining_weights / remaining_weights.sum()
        
        # Randomly select one item based on weights
        selected_idx = np.random.choice(len(remaining_population), p=normalized_weights)
        
        # Add the selected item to our result
        selected.append(remaining_population[selected_idx])
        
        # Remove the selected item from the pool
        remaining_population.pop(selected_idx)
        remaining_weights = np.delete(remaining_weights, selected_idx)
        
    return selected

def load_context(set_interrupt=False):
    if set_interrupt:
        generation_interrupt.set()
        time.sleep(0.2)
        
    generation_interrupt.clear()
    example = get_random_example()
    
    context_desc = example.get('processed_context_desc', '')
    if context_desc:
        context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
    
    show_full = False
    context_html = get_context_html(example, show_full=show_full)
    
    return [
        example,
        gr.update(value=example['question']),
        gr.update(value=context_desc, visible=bool(context_desc)),
        gr.update(value=context_html),
        gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
        show_full
    ]

def load_leaderboard():
    results = load_leaderboard_data()
    leaderboard_html = generate_leaderboard_html(results)
    return leaderboard_html

def generate_model_summaries(example):
    result = {
        "model_a": "",
        "model_b": "",
        "summary_a": "",
        "summary_b": "",
        "completed": False
    }
    
    if generation_interrupt.is_set():
        return result

    try:
        # Get current leaderboard data to determine model usage counts
        leaderboard_data = load_leaderboard_data()
        
        # Calculate weights using inverse weighting
        # Weight = K / (games_played + C)
        K = 100  # Scaling factor
        C = 5    # Smoothing constant
        
        weights = []
        model_list = []
        
        for model in model_names:
            # Get games played for the model, default to 0 if not found
            games_played = leaderboard_data["games_played"].get(model, 0)
            
            # Calculate weight using inverse formula
            weight = K / (games_played + C)
            
            weights.append(weight)
            model_list.append(model)
        
        # Select two models using weighted sampling without replacement
        selected_models = weighted_sample_without_replacement(model_list, weights, k=2)
        m_a_name, m_b_name = selected_models
        
        result["model_a"] = m_a_name
        result["model_b"] = m_b_name
        
        s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
        
        if not generation_interrupt.is_set():
            result["summary_a"] = s_a
            result["summary_b"] = s_b
            result["completed"] = bool(s_a and s_b)
    except Exception as e:
        print(f"Error in generation: {e}")
        
    return result

def process_generation_result(result):
    if not result["completed"] or not result["summary_a"] or not result["summary_b"]:
        return [
            result.get("model_a", ""), 
            result.get("model_b", ""), 
            result.get("summary_a", ""), 
            result.get("summary_b", ""),
            None, [], False, load_leaderboard_data(),
            gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")),
            gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")),
            gr.update(interactive=False, elem_classes=["vote-button"]),
            gr.update(interactive=False, elem_classes=["vote-button"]),
            gr.update(interactive=False, elem_classes=["vote-button"]),
            gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
            gr.update(choices=[], value=[], interactive=False, visible=False),
            gr.update(visible=False),
            gr.update(interactive=False, visible=True),
            gr.update(visible=False),
            gr.update(interactive=True),
            gr.update(elem_classes=[])
        ]
    
    buttons_interactive = bool(result["summary_a"] and result["summary_b"])
    
    agg_results = load_leaderboard_data()
    return [
        result["model_a"], result["model_b"], 
        result["summary_a"], result["summary_b"],
        None, [], False, agg_results,
        gr.update(value=result["summary_a"]),
        gr.update(value=result["summary_b"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]),
        gr.update(choices=[], value=[], interactive=False, visible=False),
        gr.update(visible=False),
        gr.update(interactive=False, visible=True),
        gr.update(visible=False),
        gr.update(interactive=True),
        gr.update(elem_classes=[])
    ]

def process_example(example):
    result = generate_model_summaries(example)
    return process_generation_result(result)

def select_vote_improved(winner_choice):
    feedback_choices = feedback_options.get(winner_choice, [])

    btn_a_classes = ["vote-button"]
    btn_b_classes = ["vote-button"]
    btn_tie_classes = ["vote-button"]
    btn_neither_classes = ["vote-button", "vote-button-neither"]
    
    if winner_choice == 'left':
        btn_a_classes.append("selected")
    elif winner_choice == 'right':
        btn_b_classes.append("selected")
    elif winner_choice == 'tie':
        btn_tie_classes.append("selected")
    elif winner_choice == 'neither':
        btn_neither_classes.append("selected")

    return [
        winner_choice,
        gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
        gr.update(visible=True),
        gr.update(interactive=True),
        gr.update(elem_classes=btn_a_classes),
        gr.update(elem_classes=btn_b_classes),
        gr.update(elem_classes=btn_tie_classes),
        gr.update(elem_classes=btn_neither_classes)
    ]

def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
    if winner is None:
        print("Warning: Submit called without a winner selected.")
        return {}

    save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
    return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)

def show_loading_state():
    """Show loading state while fetching new content and reset UI elements"""
    return [
        gr.update(value="Loading new question and summaries...", interactive=False),
        gr.update(value="Loading new question and summaries...", interactive=False),
        gr.update(interactive=False, elem_classes=["vote-button"]),  # Reset styling
        gr.update(interactive=False, elem_classes=["vote-button"]),
        gr.update(interactive=False, elem_classes=["vote-button"]),
        gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
        gr.update(visible=False),      # feedback_section
        gr.update(interactive=False),  # submit_button
        gr.update(visible=False),      # results_reveal_area
        gr.update(interactive=False),  # random_question_btn
        None  # Reset selected_winner
    ]

def handle_new_example_click():
    return load_context(set_interrupt=True)[0]

def update_ui_for_new_context(example):
    context_desc = example.get('processed_context_desc', '')
    if context_desc:
        context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
    
    return [
        gr.update(value=example['question']),
        gr.update(value=context_desc, visible=bool(context_desc)),
        gr.update(value=get_context_html(example, False)),
        gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
        False
    ]

def cleanup_on_disconnect():
    print(f"Browser disconnected. Cleaning up resources...")
    generation_interrupt.set()

with gr.Blocks(theme=gr.themes.Default(
    primary_hue=gr.themes.colors.orange,
    secondary_hue=gr.themes.colors.slate
)) as demo:
    css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
    
    with open(css_path, 'r') as f:
        css_content = f.read()
    
    gr.HTML(f"<style>{css_content}</style>")
    
    unload_js = """
    <script>
    window.addEventListener('beforeunload', function(e) {
        navigator.sendBeacon('/cleanup?session_id=' + window.gradioClientState.session_hash);
    });
    </script>
    """
    gr.HTML(unload_js)

    current_example = gr.State({})
    model_a_name = gr.State("")
    model_b_name = gr.State("")
    summary_a_text = gr.State("")
    summary_b_text = gr.State("")
    selected_winner = gr.State(None)
    feedback_list = gr.State([])
    show_results_state = gr.State(False)
    results_agg = gr.State(load_leaderboard_data())
    show_full_context = gr.State(False)

    with gr.Tabs() as tabs:
        with gr.TabItem("Arena", id="arena-tab"):
            gr.Markdown("# Small Language Model RAG Summarization/Generation Arena")
            gr.Markdown("""
🏟️ This arena evaluates SLMs on document QA tasks with retrieved context. They should provide **grounded, comprehensive** answers or **properly decline** when information is insufficient.

πŸ“ Insturction: 1. **Review the query and context**. 2. **Compare answers** generated by two different models. 3. **Vote for the better response** or select 'Tie/Neither' if appropriate.

""")

            gr.HTML("<hr>")

            with gr.Column(elem_id="main-interface-area") as main_interface_area:
                with gr.Row(elem_id="query-title-row"):
                    gr.Markdown("### πŸ’¬ Query - Question About Document Content", elem_classes="section-heading")

                with gr.Row(elem_id="query-container"):
                    with gr.Row(elem_classes="query-box-row"):
                        query_display = gr.Markdown(value="Loading question...", elem_classes="query-text", elem_id="query-section")
                    random_question_btn = gr.Button("πŸ”„ Try a New Question", elem_classes="query-button")
                
                context_description = gr.Markdown("", elem_classes="context-description")
                
                gr.HTML("<hr>")

                with gr.Row(elem_id="context-header-row"):
                    gr.Markdown("### πŸ“‹ Context - Retrieved Content from the Document", elem_classes="context-title")
                    context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
                    
                context_display = gr.HTML(value="Loading context...", label="Context Chunks")

                gr.Markdown("---")
                gr.Markdown("### πŸ” Compare Models - Are these Grounded, Complete Answers or Correct Rejections?", elem_classes="section-heading")

                with gr.Row(elem_id="summary-containers"):
                    with gr.Column(scale=1):
                        with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
                            summary_a_display = gr.Textbox(
                                label="Model A", 
                                lines=10, 
                                interactive=False, 
                                show_copy_button=True, 
                                autoscroll=False,
                                elem_id="summary-a-display"
                            )
                    with gr.Column(scale=1):
                        with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
                            summary_b_display = gr.Textbox(
                                label="Model B", 
                                lines=10, 
                                interactive=False, 
                                show_copy_button=True,
                                autoscroll=False,
                                elem_id="summary-b-display"
                            )

                gr.HTML("<hr>")

                gr.Markdown("### πŸ… Cast Your Vote", elem_classes="section-heading")
                with gr.Row():
                    vote_button_a = gr.Button("⬅️ Summary A is Better", elem_classes=["vote-button"], interactive=False)
                    vote_button_tie = gr.Button("🀝 Tie / Equally Good", elem_classes=["vote-button"], interactive=False)
                    vote_button_b = gr.Button("➑️ Summary B is Better", elem_classes=["vote-button"], interactive=False)
                    vote_button_neither = gr.Button("❌ Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False)

                with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
                    feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
                submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button")

                with gr.Column(visible=False) as results_reveal_area:
                    gr.Markdown("---")
                    gr.Markdown("### βœ… Vote Submitted!", elem_classes="section-heading")
                     
                    with gr.Row():
                        with gr.Column(scale=1):
                            gr.Markdown("### Model A was:", elem_classes="section-heading")
                            model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
                        with gr.Column(scale=1):
                            gr.Markdown("### Model B was:", elem_classes="section-heading")
                            model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
                     
                    gr.HTML("<hr>")
                    
                    with gr.Row(elem_classes=["control-buttons"]):
                        try_another_btn = gr.Button("πŸ”„ Try Another Question", elem_id="try-another-btn")

        with gr.TabItem("Leaderboard", id="leaderboard-tab"):
            gr.Markdown("# RAG SLM Summarizer/Generator Leaderboard", elem_classes="orange-title")
            gr.Markdown("View performance statistics for all models ranked by Elo rating.")
            
            with gr.Group(elem_id="leaderboard-info"):
                gr.Markdown("""### About Elo Ratings
                
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The Β± value shows the statistical confidence interval (95%)
""")
            
            results_table_display = gr.HTML(label="Model Performance")

    context_toggle_btn.click(
        fn=toggle_context_display,
        inputs=[current_example, show_full_context],
        outputs=[show_full_context, context_display, context_toggle_btn]
    )
    
    demo.load(
        fn=load_context,
        inputs=[],
        outputs=[current_example, query_display, context_description, context_display, 
                context_toggle_btn, show_full_context]
    ).then(
        fn=process_example,
        inputs=[current_example],
        outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
                selected_winner, feedback_list, show_results_state, results_agg,
                summary_a_display, summary_b_display, vote_button_a, vote_button_b, 
                vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, 
                submit_button, results_reveal_area, random_question_btn, main_interface_area]
    )

    demo.load(
        fn=load_leaderboard,
        inputs=[],
        outputs=[results_table_display]
    )

    for btn in [random_question_btn, try_another_btn]:
        btn.click(
            fn=show_loading_state,
            inputs=[],
            outputs=[
                summary_a_display, summary_b_display, 
                vote_button_a, vote_button_b, vote_button_tie, vote_button_neither,
                feedback_section, submit_button, results_reveal_area, random_question_btn,
                selected_winner  # Add selected_winner to reset vote state
            ]
        ).then(
            fn=handle_new_example_click,
            inputs=[],
            outputs=[current_example]
        ).then(
            fn=update_ui_for_new_context,
            inputs=[current_example],
            outputs=[query_display, context_description, context_display, 
                    context_toggle_btn, show_full_context]
        ).then(
            fn=process_example,
            inputs=[current_example],
            outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
                    selected_winner, feedback_list, show_results_state, results_agg,
                    summary_a_display, summary_b_display, vote_button_a, vote_button_b, 
                    vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, 
                    submit_button, results_reveal_area, random_question_btn, main_interface_area]
        )

    for btn, choice in zip(
        [vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
        ['left', 'right', 'tie', 'neither']
    ):
        btn.click(
            fn=lambda choice=choice: select_vote_improved(choice),
            inputs=None,
            outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button, 
                    vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
        )

    feedback_checkboxes.change(
        fn=update_feedback,
        inputs=[feedback_checkboxes],
        outputs=[feedback_list]
    )

    submit_button.click(
        fn=handle_vote_submission,
        inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
        outputs=[show_results_state, results_agg, vote_button_a, vote_button_b, 
                vote_button_tie, vote_button_neither, feedback_checkboxes,
                feedback_section, submit_button, results_reveal_area,
                random_question_btn, results_table_display, main_interface_area,
                context_toggle_btn, model_a_reveal, model_b_reveal]
    )
    
    tabs.select(
        fn=load_leaderboard,
        inputs=[],
        outputs=[results_table_display],
        api_name="refresh_leaderboard"
    )
    
    demo.unload(cleanup_on_disconnect)

if __name__ == "__main__":
    demo.launch(debug=True)