SLM-RAG-Arena / app.py
aizip-dev's picture
Update app.py
3f599cd verified
raw
history blame
21.3 kB
import gradio as gr
import random
import pandas as pd
import os
import threading
import time
import numpy as np
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
from utils.shared import generation_interrupt
feedback_options = {
"left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
"right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
"tie": ["Model A: Complete", "Model A: Accurate", "Model A: Relevant", "Model A: Well written", "Model A: Correct refusal (if applicable)",
"Model B: Complete", "Model B: Accurate", "Model B: Relevant", "Model B: Well written", "Model B: Corrent refusal (if applicable)"],
"neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)",
"Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"]
}
def weighted_sample_without_replacement(population, weights, k=2):
"""
Performs a weighted random sampling without replacement.
Args:
population: The list of items to sample from
weights: The weight for each item
k: Number of items to sample
Returns:
A list of k sampled items
"""
if len(population) <= k:
return population
# Convert weights to numpy array for efficient operations
weights = np.array(weights)
# Create a copy of the population and weights
remaining_population = population.copy()
remaining_weights = weights.copy()
selected = []
for _ in range(k):
# Normalize weights so they sum to 1
normalized_weights = remaining_weights / remaining_weights.sum()
# Randomly select one item based on weights
selected_idx = np.random.choice(len(remaining_population), p=normalized_weights)
# Add the selected item to our result
selected.append(remaining_population[selected_idx])
# Remove the selected item from the pool
remaining_population.pop(selected_idx)
remaining_weights = np.delete(remaining_weights, selected_idx)
return selected
def load_context(set_interrupt=False):
if set_interrupt:
generation_interrupt.set()
time.sleep(0.2)
generation_interrupt.clear()
example = get_random_example()
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
show_full = False
context_html = get_context_html(example, show_full=show_full)
return [
example,
gr.update(value=example['question']),
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=context_html),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
show_full
]
def load_leaderboard():
results = load_leaderboard_data()
leaderboard_html = generate_leaderboard_html(results)
return leaderboard_html
def generate_model_summaries(example):
result = {
"model_a": "",
"model_b": "",
"summary_a": "",
"summary_b": "",
"completed": False
}
if generation_interrupt.is_set():
return result
try:
# Get current leaderboard data to determine model usage counts
leaderboard_data = load_leaderboard_data()
# Calculate weights using inverse weighting
# Weight = K / (games_played + C)
K = 100 # Scaling factor
C = 5 # Smoothing constant
weights = []
model_list = []
for model in model_names:
# Get games played for the model, default to 0 if not found
games_played = leaderboard_data["games_played"].get(model, 0)
# Calculate weight using inverse formula
weight = K / (games_played + C)
weights.append(weight)
model_list.append(model)
# Select two models using weighted sampling without replacement
selected_models = weighted_sample_without_replacement(model_list, weights, k=2)
m_a_name, m_b_name = selected_models
result["model_a"] = m_a_name
result["model_b"] = m_b_name
s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
if not generation_interrupt.is_set():
result["summary_a"] = s_a
result["summary_b"] = s_b
result["completed"] = bool(s_a and s_b)
except Exception as e:
print(f"Error in generation: {e}")
return result
def process_generation_result(result):
if not result["completed"] or not result["summary_a"] or not result["summary_b"]:
return [
result.get("model_a", ""),
result.get("model_b", ""),
result.get("summary_a", ""),
result.get("summary_b", ""),
None, [], False, load_leaderboard_data(),
gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")),
gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
buttons_interactive = bool(result["summary_a"] and result["summary_b"])
agg_results = load_leaderboard_data()
return [
result["model_a"], result["model_b"],
result["summary_a"], result["summary_b"],
None, [], False, agg_results,
gr.update(value=result["summary_a"]),
gr.update(value=result["summary_b"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
def process_example(example):
result = generate_model_summaries(example)
return process_generation_result(result)
def select_vote_improved(winner_choice):
feedback_choices = feedback_options.get(winner_choice, [])
btn_a_classes = ["vote-button"]
btn_b_classes = ["vote-button"]
btn_tie_classes = ["vote-button"]
btn_neither_classes = ["vote-button", "vote-button-neither"]
if winner_choice == 'left':
btn_a_classes.append("selected")
elif winner_choice == 'right':
btn_b_classes.append("selected")
elif winner_choice == 'tie':
btn_tie_classes.append("selected")
elif winner_choice == 'neither':
btn_neither_classes.append("selected")
return [
winner_choice,
gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
gr.update(visible=True),
gr.update(interactive=True),
gr.update(elem_classes=btn_a_classes),
gr.update(elem_classes=btn_b_classes),
gr.update(elem_classes=btn_tie_classes),
gr.update(elem_classes=btn_neither_classes)
]
def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
if winner is None:
print("Warning: Submit called without a winner selected.")
return {}
save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)
def show_loading_state():
"""Show loading state while fetching new content and reset UI elements"""
return [
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(interactive=False, elem_classes=["vote-button"]), # Reset styling
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button"]),
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(visible=False), # feedback_section
gr.update(interactive=False), # submit_button
gr.update(visible=False), # results_reveal_area
gr.update(interactive=False), # random_question_btn
None # Reset selected_winner
]
def handle_new_example_click():
return load_context(set_interrupt=True)[0]
def update_ui_for_new_context(example):
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
return [
gr.update(value=example['question']),
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=get_context_html(example, False)),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
False
]
def cleanup_on_disconnect():
print(f"Browser disconnected. Cleaning up resources...")
generation_interrupt.set()
with gr.Blocks(theme=gr.themes.Default(
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.slate
)) as demo:
css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
with open(css_path, 'r') as f:
css_content = f.read()
gr.HTML(f"<style>{css_content}</style>")
unload_js = """
<script>
window.addEventListener('beforeunload', function(e) {
navigator.sendBeacon('/cleanup?session_id=' + window.gradioClientState.session_hash);
});
</script>
"""
gr.HTML(unload_js)
current_example = gr.State({})
model_a_name = gr.State("")
model_b_name = gr.State("")
summary_a_text = gr.State("")
summary_b_text = gr.State("")
selected_winner = gr.State(None)
feedback_list = gr.State([])
show_results_state = gr.State(False)
results_agg = gr.State(load_leaderboard_data())
show_full_context = gr.State(False)
with gr.Tabs() as tabs:
with gr.TabItem("Arena", id="arena-tab"):
gr.Markdown("# Small Language Model RAG Summarization/Generation Arena")
gr.Markdown("""
🏟️ This arena evaluates SLMs on document QA tasks with retrieved context. They should provide **grounded, comprehensive** answers or **properly decline** when information is insufficient.
📝 Insturction: 1. **Review the query and context**. 2. **Compare answers** generated by two different models. 3. **Vote for the better response** or select 'Tie/Neither' if appropriate.
""")
gr.HTML("<hr>")
with gr.Column(elem_id="main-interface-area") as main_interface_area:
with gr.Row(elem_id="query-title-row"):
gr.Markdown("### 💬 Query - Question About Document Content", elem_classes="section-heading")
with gr.Row(elem_id="query-container"):
with gr.Row(elem_classes="query-box-row"):
query_display = gr.Markdown(value="Loading question...", elem_classes="query-text", elem_id="query-section")
random_question_btn = gr.Button("🔄 Try a New Question", elem_classes="query-button")
context_description = gr.Markdown("", elem_classes="context-description")
gr.HTML("<hr>")
with gr.Row(elem_id="context-header-row"):
gr.Markdown("### 📋 Context - Retrieved Content from the Document", elem_classes="context-title")
context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
context_display = gr.HTML(value="Loading context...", label="Context Chunks")
gr.Markdown("---")
gr.Markdown("### 🔍 Compare Models - Are these Grounded, Complete Answers or Correct Rejections?", elem_classes="section-heading")
with gr.Row(elem_id="summary-containers"):
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
summary_a_display = gr.Textbox(
label="Model A",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False,
elem_id="summary-a-display"
)
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
summary_b_display = gr.Textbox(
label="Model B",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False,
elem_id="summary-b-display"
)
gr.HTML("<hr>")
gr.Markdown("### 🏅 Cast Your Vote", elem_classes="section-heading")
with gr.Row():
vote_button_a = gr.Button("⬅️ Summary A is Better", elem_classes=["vote-button"], interactive=False)
vote_button_tie = gr.Button("🤝 Tie / Equally Good", elem_classes=["vote-button"], interactive=False)
vote_button_b = gr.Button("➡️ Summary B is Better", elem_classes=["vote-button"], interactive=False)
vote_button_neither = gr.Button("❌ Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False)
with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button")
with gr.Column(visible=False) as results_reveal_area:
gr.Markdown("---")
gr.Markdown("### ✅ Vote Submitted!", elem_classes="section-heading")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model A was:", elem_classes="section-heading")
model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
with gr.Column(scale=1):
gr.Markdown("### Model B was:", elem_classes="section-heading")
model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
gr.HTML("<hr>")
with gr.Row(elem_classes=["control-buttons"]):
try_another_btn = gr.Button("🔄 Try Another Question", elem_id="try-another-btn")
with gr.TabItem("Leaderboard", id="leaderboard-tab"):
gr.Markdown("# RAG SLM Summarizer/Generator Leaderboard", elem_classes="orange-title")
gr.Markdown("View performance statistics for all models ranked by Elo rating.")
with gr.Group(elem_id="leaderboard-info"):
gr.Markdown("""### About Elo Ratings
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The ± value shows the statistical confidence interval (95%)
""")
results_table_display = gr.HTML(label="Model Performance")
context_toggle_btn.click(
fn=toggle_context_display,
inputs=[current_example, show_full_context],
outputs=[show_full_context, context_display, context_toggle_btn]
)
demo.load(
fn=load_context,
inputs=[],
outputs=[current_example, query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
demo.load(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display]
)
for btn in [random_question_btn, try_another_btn]:
btn.click(
fn=show_loading_state,
inputs=[],
outputs=[
summary_a_display, summary_b_display,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither,
feedback_section, submit_button, results_reveal_area, random_question_btn,
selected_winner # Add selected_winner to reset vote state
]
).then(
fn=handle_new_example_click,
inputs=[],
outputs=[current_example]
).then(
fn=update_ui_for_new_context,
inputs=[current_example],
outputs=[query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
for btn, choice in zip(
[vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
['left', 'right', 'tie', 'neither']
):
btn.click(
fn=lambda choice=choice: select_vote_improved(choice),
inputs=None,
outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
)
feedback_checkboxes.change(
fn=update_feedback,
inputs=[feedback_checkboxes],
outputs=[feedback_list]
)
submit_button.click(
fn=handle_vote_submission,
inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
outputs=[show_results_state, results_agg, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes,
feedback_section, submit_button, results_reveal_area,
random_question_btn, results_table_display, main_interface_area,
context_toggle_btn, model_a_reveal, model_b_reveal]
)
tabs.select(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display],
api_name="refresh_leaderboard"
)
demo.unload(cleanup_on_disconnect)
if __name__ == "__main__":
demo.launch(debug=True)