SLM-RAG-Arena / app.py
oliver-aizip's picture
Remove timeout & update elo ranking (#4)
ce4dda5 verified
raw
history blame
16.9 kB
import gradio as gr
import random
import pandas as pd
import os
import threading
from threading import Event
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
# Global interrupt mechanism for model generation
generation_interrupt = Event()
# Feedback options for different voting outcomes
feedback_options = {
"left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
"right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
"tie": ["Both complete", "Both accurate", "Both well written", "Both handle refusal well (if applicable)"],
"neither": ["Both incomplete", "Both hallucinate", "Both irrelevant", "Both incorrectly refuse (if applicable)", "A is bad", "B is bad"]
}
def load_context():
"""Load a new question and context (fast operation)"""
generation_interrupt.clear()
example = get_random_example()
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
show_full = False
context_html = get_context_html(example, show_full=show_full)
return [
example,
gr.update(value=example['question']),
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=context_html),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
show_full
]
def load_leaderboard():
"""Loads and displays the leaderboard data"""
results = load_leaderboard_data()
leaderboard_html = generate_leaderboard_html(results)
return leaderboard_html
def generate_model_summaries(example):
"""Run model inference"""
result = {
"model_a": "",
"model_b": "",
"summary_a": "",
"summary_b": "",
"completed": False
}
if generation_interrupt.is_set():
return result
try:
m_a_name, m_b_name = random.sample(model_names, 2)
s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
if not generation_interrupt.is_set():
result["model_a"] = m_a_name
result["model_b"] = m_b_name
result["summary_a"] = s_a
result["summary_b"] = s_b
result["completed"] = True
except Exception as e:
print(f"Error in generation: {e}")
return result
def process_generation_result(result):
"""Process the results from the generation function"""
if not result["completed"]:
# Generation was interrupted or failed
return [
"", "", "", "", None, [], False, load_leaderboard_data(),
gr.update(value="Generation was interrupted or failed. Please try again."),
gr.update(value="Generation was interrupted or failed. Please try again."),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
# Generation completed successfully
agg_results = load_leaderboard_data()
return [
result["model_a"], result["model_b"],
result["summary_a"], result["summary_b"],
None, [], False, agg_results,
gr.update(value=result["summary_a"]),
gr.update(value=result["summary_b"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
def process_example(example):
result = generate_model_summaries(example)
return process_generation_result(result)
def select_vote_improved(winner_choice):
"""Updates UI based on vote selection"""
feedback_choices = feedback_options.get(winner_choice, [])
btn_a_classes = ["vote-button"]
btn_b_classes = ["vote-button"]
btn_tie_classes = ["vote-button"]
btn_neither_classes = ["vote-button", "vote-button-neither"]
if winner_choice == 'left':
btn_a_classes.append("selected")
elif winner_choice == 'right':
btn_b_classes.append("selected")
elif winner_choice == 'tie':
btn_tie_classes.append("selected")
elif winner_choice == 'neither':
btn_neither_classes.append("selected")
return [
winner_choice,
gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
gr.update(visible=True),
gr.update(interactive=True),
gr.update(elem_classes=btn_a_classes),
gr.update(elem_classes=btn_b_classes),
gr.update(elem_classes=btn_tie_classes),
gr.update(elem_classes=btn_neither_classes)
]
def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
"""Handle vote submission - logs details and updates leaderboard"""
if winner is None:
print("Warning: Submit called without a winner selected.")
return {}
# Save detailed vote information
save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
# Update Elo ratings and get UI updates
return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Default(
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.slate
)) as demo:
# Load CSS
css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
with open(css_path, 'r') as f:
css_content = f.read()
gr.HTML(f"<style>{css_content}</style>")
# State Variables
current_example = gr.State({})
model_a_name = gr.State("")
model_b_name = gr.State("")
summary_a_text = gr.State("")
summary_b_text = gr.State("")
selected_winner = gr.State(None)
feedback_list = gr.State([])
show_results_state = gr.State(False)
results_agg = gr.State(load_leaderboard_data())
show_full_context = gr.State(False)
# Create Tabs
with gr.Tabs() as tabs:
# Main Arena Tab
with gr.TabItem("Arena", id="arena-tab"):
gr.Markdown("# RAG Summarizer Arena")
gr.Markdown("Compare summaries generated by different models based on the provided context and query. Select the better summary, or choose 'Tie' or 'Neither'. Your feedback helps evaluate model performance.")
# Main container
with gr.Column(elem_id="main-interface-area") as main_interface_area:
# Query section
with gr.Row(elem_id="query-title-row"):
gr.Markdown("### Query", elem_classes="section-heading")
with gr.Row(elem_id="query-container"):
with gr.Row(elem_classes="query-box-row"):
query_display = gr.Markdown(value="Loading question...", elem_classes="query-text")
random_question_btn = gr.Button("🔄 Get Random Question", elem_classes="query-button")
# Context description and display
context_description = gr.Markdown("", elem_classes="context-description")
with gr.Row(elem_id="context-header-row"):
gr.Markdown("### Context Provided", elem_classes="context-title")
context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
context_display = gr.HTML(value="Loading context...", label="Context Chunks")
gr.Markdown("---")
gr.Markdown("### Compare Summaries", elem_classes="section-heading")
# Model summaries
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
summary_a_display = gr.Textbox(label="Model A", lines=10, interactive=False, show_copy_button=True)
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
summary_b_display = gr.Textbox(label="Model B", lines=10, interactive=False, show_copy_button=True)
# Voting section
gr.Markdown("### Cast Your Vote", elem_classes="section-heading")
with gr.Row():
vote_button_a = gr.Button("⬅️ Summary A is Better", elem_classes=["vote-button"])
vote_button_tie = gr.Button("🤝 Tie / Equally Good", elem_classes=["vote-button"])
vote_button_b = gr.Button("➡️ Summary B is Better", elem_classes=["vote-button"])
vote_button_neither = gr.Button("❌ Neither is Adequate", elem_classes=["vote-button", "vote-button-neither"])
# Feedback and Submit sections
with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
submit_button = gr.Button("Submit Vote", variant="primary", interactive=False, elem_id="submit-button")
# Results area
with gr.Column(visible=False) as results_reveal_area:
gr.Markdown("---")
gr.Markdown("### ✅ Vote Submitted!", elem_classes="section-heading")
# Model reveal section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model A was actually:", elem_classes="section-heading")
model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
with gr.Column(scale=1):
gr.Markdown("### Model B was actually:", elem_classes="section-heading")
model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
gr.HTML("<div style='height: 10px;'></div>")
# Try another button
with gr.Row(elem_classes=["control-buttons"]):
try_another_btn = gr.Button("🔄 Try Another Question", elem_id="try-another-btn")
# Leaderboard Tab
with gr.TabItem("Leaderboard", id="leaderboard-tab"):
gr.Markdown("# Model Performance Leaderboard", elem_classes="orange-title")
gr.Markdown("View performance statistics for all models ranked by Elo rating.")
with gr.Group(elem_id="leaderboard-info"):
gr.Markdown("""### About Elo Ratings
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The ± value shows the statistical confidence interval (95%)
""")
results_table_display = gr.HTML(label="Model Performance")
# Generic function to handle starting a new example
def handle_new_example_click():
generation_interrupt.set() # Interrupt any ongoing generation
return load_context()[0]
def update_ui_for_new_context(example):
return [
gr.update(value=example['question']),
gr.update(value=example.get('processed_context_desc', ''), visible=bool(example.get('processed_context_desc', ''))),
gr.update(value=get_context_html(example, False)),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
False
]
# Event handling
# Toggle context display
context_toggle_btn.click(
fn=toggle_context_display,
inputs=[current_example, show_full_context],
outputs=[show_full_context, context_display, context_toggle_btn]
)
# Initial loading - context first, then summaries
demo.load(
fn=load_context,
inputs=[],
outputs=[current_example, query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
# Load leaderboard content on app start
demo.load(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display]
)
# Random Question and Try Another buttons with interruption
for btn in [random_question_btn, try_another_btn]:
btn.click(
fn=handle_new_example_click,
inputs=[],
outputs=[current_example]
).then(
fn=update_ui_for_new_context,
inputs=[current_example],
outputs=[query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
# Vote button handlers
for btn, choice in zip(
[vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
['left', 'right', 'tie', 'neither']
):
btn.click(
fn=lambda choice=choice: select_vote_improved(choice),
inputs=None,
outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
)
# Update feedback when checkboxes change
feedback_checkboxes.change(
fn=update_feedback,
inputs=[feedback_checkboxes],
outputs=[feedback_list]
)
# Process vote submission and reveal results
submit_button.click(
fn=handle_vote_submission,
inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
outputs=[show_results_state, results_agg, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes,
feedback_section, submit_button, results_reveal_area,
random_question_btn, results_table_display, main_interface_area,
context_toggle_btn, model_a_reveal, model_b_reveal]
)
# Refresh leaderboard when switching to the leaderboard tab
tabs.select(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display],
api_name="refresh_leaderboard"
)
if __name__ == "__main__":
demo.launch(debug=True)