SLM-RAG-Arena / app.py
kai-aizip's picture
Add manual clean up of the resources
a8243a3 verified
raw
history blame
20.2 kB
import gradio as gr
import random
import pandas as pd
import os
import threading
import time
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
from utils.shared import generation_interrupt # Import from shared module
# Feedback options for different voting outcomes
feedback_options = {
"left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
"right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
"tie": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)",
"Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
"neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)",
"Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"]
}
def load_context(set_interrupt=False):
"""
Load a new question and context
Parameters:
- set_interrupt: If True, will interrupt any ongoing inference before loading
"""
if set_interrupt:
# Interrupt any ongoing inference
generation_interrupt.set()
time.sleep(0.2) # Short delay to allow threads to detect interrupt
# Always clear the flag before starting new work
generation_interrupt.clear()
example = get_random_example()
context_desc = example.get('processed_context_desc', '')
if context_desc:
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
show_full = False
context_html = get_context_html(example, show_full=show_full)
return [
example,
gr.update(value=example['question']),
gr.update(value=context_desc, visible=bool(context_desc)),
gr.update(value=context_html),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
show_full
]
def load_leaderboard():
"""Loads and displays the leaderboard data"""
results = load_leaderboard_data()
leaderboard_html = generate_leaderboard_html(results)
return leaderboard_html
def generate_model_summaries(example):
"""Run model inference"""
result = {
"model_a": "",
"model_b": "",
"summary_a": "",
"summary_b": "",
"completed": False
}
if generation_interrupt.is_set():
return result
try:
m_a_name, m_b_name = random.sample(model_names, 2)
s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
if not generation_interrupt.is_set():
result["model_a"] = m_a_name
result["model_b"] = m_b_name
result["summary_a"] = s_a
result["summary_b"] = s_b
result["completed"] = True
except Exception as e:
print(f"Error in generation: {e}")
return result
def process_generation_result(result):
"""Process the results from the generation function"""
if not result["completed"]:
# Generation was interrupted or failed
return [
"", "", "", "", None, [], False, load_leaderboard_data(),
gr.update(value="Generation was interrupted or failed. Please try again."),
gr.update(value="Generation was interrupted or failed. Please try again."),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
# Generation completed successfully
agg_results = load_leaderboard_data()
return [
result["model_a"], result["model_b"],
result["summary_a"], result["summary_b"],
None, [], False, agg_results,
gr.update(value=result["summary_a"]),
gr.update(value=result["summary_b"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button"]),
gr.update(interactive=True, elem_classes=["vote-button", "vote-button-neither"]),
gr.update(choices=[], value=[], interactive=False, visible=False),
gr.update(visible=False),
gr.update(interactive=False, visible=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(elem_classes=[])
]
def process_example(example):
result = generate_model_summaries(example)
return process_generation_result(result)
def select_vote_improved(winner_choice):
"""Updates UI based on vote selection"""
feedback_choices = feedback_options.get(winner_choice, [])
btn_a_classes = ["vote-button"]
btn_b_classes = ["vote-button"]
btn_tie_classes = ["vote-button"]
btn_neither_classes = ["vote-button", "vote-button-neither"]
if winner_choice == 'left':
btn_a_classes.append("selected")
elif winner_choice == 'right':
btn_b_classes.append("selected")
elif winner_choice == 'tie':
btn_tie_classes.append("selected")
elif winner_choice == 'neither':
btn_neither_classes.append("selected")
return [
winner_choice,
gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
gr.update(visible=True),
gr.update(interactive=True),
gr.update(elem_classes=btn_a_classes),
gr.update(elem_classes=btn_b_classes),
gr.update(elem_classes=btn_tie_classes),
gr.update(elem_classes=btn_neither_classes)
]
def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
"""Handle vote submission - logs details and updates leaderboard"""
if winner is None:
print("Warning: Submit called without a winner selected.")
return {}
# Save detailed vote information
save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
# Update Elo ratings and get UI updates
return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)
def show_loading_state():
"""Show loading state while fetching new content"""
return [
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(value="Loading new question and summaries...", interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False)
]
def handle_new_example_click():
"""Handle clicking 'Get new example' button"""
# Use the centralized approach - set_interrupt=True tells load_context to handle interruption
return load_context(set_interrupt=True)[0]
def update_ui_for_new_context(example):
"""Update UI with new context information"""
return [
gr.update(value=example['question']),
gr.update(value=example.get('processed_context_desc', ''), visible=bool(example.get('processed_context_desc', ''))),
gr.update(value=get_context_html(example, False)),
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
False
]
# Resource cleanup function for unload event
def cleanup_on_disconnect():
"""Clean up resources when browser disconnects"""
print(f"Browser disconnected. Cleaning up resources...")
generation_interrupt.set()
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Default(
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.slate
)) as demo:
# Load CSS
css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
# Load the files
with open(css_path, 'r') as f:
css_content = f.read()
# Create HTML components with CSS and JavaScript links
gr.HTML(f"<style>{css_content}</style>")
# Add JavaScript to handle browser unload events
unload_js = """
<script>
// This runs when the page is about to be closed or refreshed
window.addEventListener('beforeunload', function(e) {
// Send a synchronous request to the server
navigator.sendBeacon('/cleanup?session_id=' + window.gradioClientState.session_hash);
});
</script>
"""
gr.HTML(unload_js)
# State Variables
current_example = gr.State({})
model_a_name = gr.State("")
model_b_name = gr.State("")
summary_a_text = gr.State("")
summary_b_text = gr.State("")
selected_winner = gr.State(None)
feedback_list = gr.State([])
show_results_state = gr.State(False)
results_agg = gr.State(load_leaderboard_data())
show_full_context = gr.State(False)
# Create Tabs
with gr.Tabs() as tabs:
# Main Arena Tab
with gr.TabItem("Arena", id="arena-tab"):
gr.Markdown("# RAG SLM Summarizer/Generator Arena")
gr.Markdown("""
1️⃣ Review the query and examine the highlighted context (✨ highlights contain key information! )\n
2️⃣ Compare answers generated by two different models side-by-side\n
3️⃣ Vote for the better response or select 'Tie/Neither' if appropriate""")
gr.HTML("<hr>")
# Main container
with gr.Column(elem_id="main-interface-area") as main_interface_area:
# Query section
with gr.Row(elem_id="query-title-row"):
gr.Markdown("### 💬 Query (What Users Want to Ask About the Doc)", elem_classes="section-heading")
with gr.Row(elem_id="query-container"):
with gr.Row(elem_classes="query-box-row"):
query_display = gr.Markdown(value="Loading question...", elem_classes="query-text", elem_id="query-section")
random_question_btn = gr.Button("🔄 Try a New Question", elem_classes="query-button")
# Context description and display
context_description = gr.Markdown("", elem_classes="context-description")
gr.HTML("<hr>")
with gr.Row(elem_id="context-header-row"):
gr.Markdown("### 📋 Context (Relevant Information We Got from the Database)", elem_classes="context-title")
context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
context_display = gr.HTML(value="Loading context...", label="Context Chunks")
gr.Markdown("---")
gr.Markdown("### 🔍 Compare Answers from Models", elem_classes="section-heading")
# Model summaries - Add ID for JavaScript to target and disable autoscroll
with gr.Row(elem_id="summary-containers"):
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
summary_a_display = gr.Textbox(
label="Model A",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False, # Disable auto-scrolling
elem_id="summary-a-display"
)
with gr.Column(scale=1):
with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
summary_b_display = gr.Textbox(
label="Model B",
lines=10,
interactive=False,
show_copy_button=True,
autoscroll=False, # Disable auto-scrolling
elem_id="summary-b-display"
)
gr.HTML("<hr>")
# Voting section
gr.Markdown("### 🏅 Cast Your Vote", elem_classes="section-heading")
with gr.Row():
vote_button_a = gr.Button("⬅️ Summary A is Better", elem_classes=["vote-button"])
vote_button_tie = gr.Button("🤝 Tie / Equally Good", elem_classes=["vote-button"])
vote_button_b = gr.Button("➡️ Summary B is Better", elem_classes=["vote-button"])
vote_button_neither = gr.Button("❌ Neither is Good", elem_classes=["vote-button", "vote-button-neither"])
# Feedback and Submit sections
with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button")
# Results area
with gr.Column(visible=False) as results_reveal_area:
gr.Markdown("---")
gr.Markdown("### ✅ Vote Submitted!", elem_classes="section-heading")
# Model reveal section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model A was:", elem_classes="section-heading")
model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
with gr.Column(scale=1):
gr.Markdown("### Model B was:", elem_classes="section-heading")
model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
gr.HTML("<hr>")
# Try another button
with gr.Row(elem_classes=["control-buttons"]):
try_another_btn = gr.Button("🔄 Try Another Question", elem_id="try-another-btn")
# Leaderboard Tab
with gr.TabItem("Leaderboard", id="leaderboard-tab"):
gr.Markdown("# RAG SLM Summarizer/Generator Leaderboard", elem_classes="orange-title")
gr.Markdown("View performance statistics for all models ranked by Elo rating.")
with gr.Group(elem_id="leaderboard-info"):
gr.Markdown("""### About Elo Ratings
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The ± value shows the statistical confidence interval (95%)
""")
results_table_display = gr.HTML(label="Model Performance")
# Event handling
# Toggle context display
context_toggle_btn.click(
fn=toggle_context_display,
inputs=[current_example, show_full_context],
outputs=[show_full_context, context_display, context_toggle_btn]
)
# Initial loading - context first, then summaries
# Uses load_context without interruption since it's the first load
demo.load(
fn=load_context, # Default is set_interrupt=False
inputs=[],
outputs=[current_example, query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
# Load leaderboard content on app start
demo.load(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display]
)
# Random Question and Try Another buttons with interruption
for btn in [random_question_btn, try_another_btn]:
btn.click(
fn=show_loading_state, # First show loading state
inputs=[],
outputs=[summary_a_display, summary_b_display, vote_button_a,
vote_button_b, vote_button_tie, vote_button_neither]
).then(
fn=handle_new_example_click, # Now uses the centralized approach
inputs=[],
outputs=[current_example]
).then(
fn=update_ui_for_new_context,
inputs=[current_example],
outputs=[query_display, context_description, context_display,
context_toggle_btn, show_full_context]
).then(
fn=process_example,
inputs=[current_example],
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
selected_winner, feedback_list, show_results_state, results_agg,
summary_a_display, summary_b_display, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section,
submit_button, results_reveal_area, random_question_btn, main_interface_area]
)
# Vote button handlers
for btn, choice in zip(
[vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
['left', 'right', 'tie', 'neither']
):
btn.click(
fn=lambda choice=choice: select_vote_improved(choice),
inputs=None,
outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button,
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
)
# Update feedback when checkboxes change
feedback_checkboxes.change(
fn=update_feedback,
inputs=[feedback_checkboxes],
outputs=[feedback_list]
)
# Process vote submission and reveal results
submit_button.click(
fn=handle_vote_submission,
inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
outputs=[show_results_state, results_agg, vote_button_a, vote_button_b,
vote_button_tie, vote_button_neither, feedback_checkboxes,
feedback_section, submit_button, results_reveal_area,
random_question_btn, results_table_display, main_interface_area,
context_toggle_btn, model_a_reveal, model_b_reveal]
)
# Refresh leaderboard when switching to the leaderboard tab
tabs.select(
fn=load_leaderboard,
inputs=[],
outputs=[results_table_display],
api_name="refresh_leaderboard"
)
# Register unload event for browser disconnections
demo.unload(cleanup_on_disconnect)
if __name__ == "__main__":
demo.launch(debug=True)