Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from .prompts import format_rag_prompt | |
# --- Dummy Model Summaries --- | |
# Define functions that simulate model summary generation | |
# models = { | |
# "Model Alpha": lambda context, question, answerable: f"Alpha Summary: Based on the context for '{question[:20]}...', it appears the question is {'answerable' if answerable else 'unanswerable'}.", | |
# "Model Beta": lambda context, question, answerable: f"Beta Summary: Regarding '{question[:20]}...', the provided documents {'allow' if answerable else 'do not allow'} for a conclusive answer based on the text.", | |
# "Model Gamma": lambda context, question, answerable: f"Gamma Summary: For the question '{question[:20]}...', I {'can' if answerable else 'cannot'} provide a specific answer from the given text snippets.", | |
# "Model Delta (Refusal Specialist)": lambda context, question, answerable: f"Delta Summary: The context for '{question[:20]}...' is {'sufficient' if answerable else 'insufficient'} to formulate a direct response. Therefore, I must refuse." | |
# } | |
models = { | |
"Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct", | |
"Qwen2.5-3b-Instruct": "qwen/qwen2.5-3b-instruct", # remove gated for now | |
"Llama-3.2-3b-Instruct": "meta-llama/llama-3.2-3b-instruct", | |
"Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct", | |
"Gemma-3-1b-it" : "google/gemma-3-1b-it", | |
#"Bitnet-b1.58-2B-4T": "microsoft/bitnet-b1.58-2B-4T", | |
#TODO add more models | |
} | |
# List of model names for easy access | |
model_names = list(models.keys()) | |
def generate_summaries(example, model_a_name, model_b_name): | |
""" | |
Generates summaries for the given example using the assigned models. | |
""" | |
# Create a plain text version of the contexts for the models | |
context_text = "" | |
context_parts = [] | |
if "full_contexts" in example: | |
for ctx in example["full_contexts"]: | |
if isinstance(ctx, dict) and "content" in ctx: | |
context_parts.append(ctx["content"]) | |
context_text = "\n---\n".join(context_parts) | |
else: | |
raise ValueError("No context found in the example.") | |
# Pass 'Answerable' status to models (they might use it) | |
answerable = example.get("Answerable", True) | |
question = example.get("question", "") | |
# Call the dummy model functions | |
summary_a = run_inference(models[model_a_name], context_text, question) | |
summary_b = run_inference(models[model_b_name], context_text, question) | |
return summary_a, summary_b | |
def run_inference(model_name, context, question): | |
""" | |
Run inference using the specified model. | |
""" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", token=True) | |
accepts_sys = ( | |
"System role not supported" not in tokenizer.chat_template | |
) # Workaround for Gemma | |
# Set padding token if not set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.bfloat16, attn_implementation="eager", token=True | |
).to(device) | |
text_input = format_rag_prompt(question, context, accepts_sys) | |
# Tokenize the input | |
actual_input = tokenizer.apply_chat_template( | |
text_input, | |
return_tensors="pt", | |
tokenize=True, | |
max_length=2048, | |
add_generation_prompt=True, | |
).to(device) | |
input_length = actual_input.shape[1] | |
attention_mask = torch.ones_like(actual_input).to(device) | |
# Generate output | |
with torch.inference_mode(): | |
outputs = model.generate( | |
actual_input, | |
attention_mask=attention_mask, | |
max_new_tokens=512, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
# Decode the output | |
result = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) | |
return result | |