SLM-RAG-Arena / app.py
oliver-aizip's picture
add requirements
c77435d
raw
history blame
3.63 kB
import gradio as gr
import random
import json
import os
from datetime import datetime
# This would be replaced with your actual SLM integration
def generate_response(query, context, model_name):
"""Placeholder function to generate response from an SLM"""
return f"This is a placeholder response from {model_name} based on query: {query} and context: {context}"
def save_evaluation(query, context, model_a, model_b, response_a, response_b, preference):
"""Save evaluation results to a JSON file"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
evaluation = {
"timestamp": timestamp,
"query": query,
"context": context,
"models": {
"left": model_a,
"right": model_b
},
"responses": {
"left": response_a,
"right": response_b
},
"preference": preference
}
# Create directory if it doesn't exist
os.makedirs("evaluations", exist_ok=True)
# Save to a file
with open(f"evaluations/eval_{timestamp.replace(' ', '_').replace(':', '-')}.json", "w") as f:
json.dump(evaluation, f, indent=2)
return "Evaluation saved successfully!"
def process_query(query, context, model_a="SLM-A", model_b="SLM-B"):
"""Process query and generate responses from two models"""
# Generate responses
response_a = generate_response(query, context, model_a)
response_b = generate_response(query, context, model_b)
# Randomly swap to avoid position bias
if random.random() > 0.5:
return response_a, response_b, model_a, model_b
else:
return response_b, response_a, model_b, model_a
def submit_evaluation(query, context, response_left, response_right, preference, model_left, model_right):
"""Submit and save the evaluation"""
if not preference:
return "Please select a preference before submitting."
save_evaluation(query, context, model_left, model_right, response_left, response_right, preference)
return "Thank you for your evaluation!"
with gr.Blocks(title="SLM-RAG Arena") as app:
gr.Markdown("# SLM-RAG Arena")
gr.Markdown("Compare responses from different models for RAG tasks.")
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Query", placeholder="Enter your query here...")
context_input = gr.Textbox(label="Context", placeholder="Enter context information here...", lines=5)
generate_btn = gr.Button("Generate Responses")
# Hidden state variables
model_left = gr.State("")
model_right = gr.State("")
with gr.Row():
with gr.Column():
gr.Markdown("### Response A")
response_left = gr.Textbox(label="", lines=10, interactive=False)
with gr.Column():
gr.Markdown("### Response B")
response_right = gr.Textbox(label="", lines=10, interactive=False)
with gr.Row():
preference = gr.Radio(
choices=["Prefer Left", "Tie", "Prefer Right", "Neither"],
label="Which response do you prefer?"
)
submit_btn = gr.Button("Submit Evaluation")
result = gr.Textbox(label="Result")
generate_btn.click(
process_query,
inputs=[query_input, context_input],
outputs=[response_left, response_right, model_left, model_right]
)
submit_btn.click(
submit_evaluation,
inputs=[query_input, context_input, response_left, response_right, preference, model_left, model_right],
outputs=[result]
)
app.launch()