Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
97629be
1
Parent(s):
e6127a4
revert to sequential processing
Browse files- utils/models.py +26 -150
utils/models.py
CHANGED
|
@@ -6,10 +6,7 @@ import torch
|
|
| 6 |
from transformers import pipeline, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
|
| 7 |
from .prompts import format_rag_prompt
|
| 8 |
from .shared import generation_interrupt
|
| 9 |
-
|
| 10 |
-
import queue
|
| 11 |
-
import time # Added for sleep
|
| 12 |
-
from vllm import LLM, SamplingParams
|
| 13 |
models = {
|
| 14 |
"Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
|
| 15 |
"Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
|
|
@@ -27,9 +24,10 @@ class InterruptCriteria(StoppingCriteria):
|
|
| 27 |
def __call__(self, input_ids, scores, **kwargs):
|
| 28 |
return self.interrupt_event.is_set()
|
| 29 |
|
|
|
|
| 30 |
def generate_summaries(example, model_a_name, model_b_name):
|
| 31 |
"""
|
| 32 |
-
Generates summaries for the given example using the assigned models.
|
| 33 |
"""
|
| 34 |
if generation_interrupt.is_set():
|
| 35 |
return "", ""
|
|
@@ -49,76 +47,28 @@ def generate_summaries(example, model_a_name, model_b_name):
|
|
| 49 |
if generation_interrupt.is_set():
|
| 50 |
return "", ""
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
summary_a = ""
|
| 58 |
-
while thread_a.is_alive():
|
| 59 |
-
if generation_interrupt.is_set():
|
| 60 |
-
print(f"Interrupting model A ({model_a_name})...")
|
| 61 |
-
# The InterruptCriteria within the thread will handle stopping generate
|
| 62 |
-
# We return early from the main control flow.
|
| 63 |
-
thread_a.join(timeout=1.0) # Give thread a moment to potentially stop
|
| 64 |
-
return "", ""
|
| 65 |
-
try:
|
| 66 |
-
summary_a = result_queue_a.get(timeout=0.1) # Check queue periodically
|
| 67 |
-
break # Got result
|
| 68 |
-
except queue.Empty:
|
| 69 |
-
continue # Still running, check interrupt again
|
| 70 |
-
|
| 71 |
-
# If thread finished but we didn't get a result (e.g., interrupted just before putting in queue)
|
| 72 |
-
if not summary_a and not result_queue_a.empty():
|
| 73 |
-
summary_a = result_queue_a.get_nowait()
|
| 74 |
-
elif not summary_a and generation_interrupt.is_set(): # Check interrupt again if thread finished quickly
|
| 75 |
-
return "", ""
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if generation_interrupt.is_set(): # Check between models
|
| 79 |
return summary_a, ""
|
| 80 |
-
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
thread_b.start()
|
| 85 |
-
|
| 86 |
-
summary_b = ""
|
| 87 |
-
while thread_b.is_alive():
|
| 88 |
-
if generation_interrupt.is_set():
|
| 89 |
-
print(f"Interrupting model B ({model_b_name})...")
|
| 90 |
-
thread_b.join(timeout=1.0)
|
| 91 |
-
return summary_a, "" # Return summary_a obtained so far
|
| 92 |
-
try:
|
| 93 |
-
summary_b = result_queue_b.get(timeout=0.1)
|
| 94 |
-
break
|
| 95 |
-
except queue.Empty:
|
| 96 |
-
continue
|
| 97 |
-
|
| 98 |
-
if not summary_b and not result_queue_b.empty():
|
| 99 |
-
summary_b = result_queue_b.get_nowait()
|
| 100 |
-
elif not summary_b and generation_interrupt.is_set():
|
| 101 |
-
return summary_a, ""
|
| 102 |
-
|
| 103 |
-
|
| 104 |
return summary_a, summary_b
|
| 105 |
|
| 106 |
-
|
| 107 |
-
# Modified run_inference to run in a thread and use a queue for results
|
| 108 |
@spaces.GPU
|
| 109 |
-
def run_inference(model_name, context, question
|
| 110 |
"""
|
| 111 |
-
Run inference using the specified model.
|
| 112 |
-
|
| 113 |
"""
|
| 114 |
-
# Check interrupt at the
|
| 115 |
if generation_interrupt.is_set():
|
| 116 |
-
|
| 117 |
-
return
|
| 118 |
|
| 119 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
-
model = None
|
| 121 |
-
tokenizer = None
|
| 122 |
result = ""
|
| 123 |
|
| 124 |
try:
|
|
@@ -127,15 +77,13 @@ def run_inference(model_name, context, question, result_queue):
|
|
| 127 |
"System role not supported" not in tokenizer.chat_template
|
| 128 |
if tokenizer.chat_template else False # Handle missing chat_template
|
| 129 |
)
|
| 130 |
-
outputs = ""
|
| 131 |
|
| 132 |
if tokenizer.pad_token is None:
|
| 133 |
tokenizer.pad_token = tokenizer.eos_token
|
| 134 |
|
| 135 |
# Check interrupt before loading the model
|
| 136 |
if generation_interrupt.is_set():
|
| 137 |
-
|
| 138 |
-
return
|
| 139 |
|
| 140 |
pipe = pipeline(
|
| 141 |
"text-generation",
|
|
@@ -148,94 +96,22 @@ def run_inference(model_name, context, question, result_queue):
|
|
| 148 |
top_p=0.9,
|
| 149 |
)
|
| 150 |
|
| 151 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
| 152 |
-
# model_name, torch_dtype=torch.bfloat16, attn_implementation="eager", token=True
|
| 153 |
-
# ).to(device)
|
| 154 |
-
# model.eval() # Set model to evaluation mode
|
| 155 |
-
|
| 156 |
text_input = format_rag_prompt(question, context, accepts_sys)
|
| 157 |
|
| 158 |
-
# Check interrupt before
|
| 159 |
if generation_interrupt.is_set():
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
# actual_input = tokenizer.apply_chat_template(
|
| 164 |
-
# text_input,
|
| 165 |
-
# return_tensors="pt",
|
| 166 |
-
# tokenize=True,
|
| 167 |
-
# # Consider reducing max_length if context/question is very long
|
| 168 |
-
# # max_length=tokenizer.model_max_length, # Use model's max length
|
| 169 |
-
# # truncation=True, # Ensure truncation if needed
|
| 170 |
-
# max_length=2048, # Keep original max_length for now
|
| 171 |
-
# add_generation_prompt=True,
|
| 172 |
-
# ).to(device)
|
| 173 |
outputs = pipe(text_input, max_new_tokens=512)
|
| 174 |
result = outputs[0]['generated_text'][-1]['content']
|
| 175 |
-
# # Ensure input does not exceed model max length after adding generation prompt
|
| 176 |
-
# # This check might be redundant if tokenizer handles it, but good for safety
|
| 177 |
-
# # if actual_input.shape[1] > tokenizer.model_max_length:
|
| 178 |
-
# # # Handle too long input - maybe truncate manually or raise error
|
| 179 |
-
# # print(f"Warning: Input length {actual_input.shape[1]} exceeds model max length {tokenizer.model_max_length}")
|
| 180 |
-
# # # Simple truncation (might lose important info):
|
| 181 |
-
# # # actual_input = actual_input[:, -tokenizer.model_max_length:]
|
| 182 |
-
|
| 183 |
-
# input_length = actual_input.shape[1]
|
| 184 |
-
# attention_mask = torch.ones_like(actual_input).to(device)
|
| 185 |
-
|
| 186 |
-
# # Check interrupt before generation
|
| 187 |
-
# if generation_interrupt.is_set():
|
| 188 |
-
# result_queue.put("")
|
| 189 |
-
# return
|
| 190 |
-
|
| 191 |
-
# stopping_criteria = StoppingCriteriaList([InterruptCriteria(generation_interrupt)])
|
| 192 |
-
|
| 193 |
-
# with torch.inference_mode():
|
| 194 |
-
# outputs = model.generate(
|
| 195 |
-
# actual_input,
|
| 196 |
-
# attention_mask=attention_mask,
|
| 197 |
-
# max_new_tokens=512,
|
| 198 |
-
# pad_token_id=tokenizer.pad_token_id,
|
| 199 |
-
# stopping_criteria=stopping_criteria,
|
| 200 |
-
# do_sample=True, # Consider adding sampling parameters if needed
|
| 201 |
-
# temperature=0.6,
|
| 202 |
-
# top_p=0.9,
|
| 203 |
-
# )
|
| 204 |
-
|
| 205 |
-
# # Check interrupt immediately after generation finishes or stops
|
| 206 |
-
# if generation_interrupt.is_set():
|
| 207 |
-
# result = "" # Discard potentially partial result if interrupted
|
| 208 |
-
# else:
|
| 209 |
-
# # Decode the generated tokens, excluding the input tokens
|
| 210 |
-
# result = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
| 211 |
-
# llm = LLM(model_name, dtype=torch.bfloat16, hf_token=True, enforce_eager=True, device="cpu")
|
| 212 |
-
# params = SamplingParams(
|
| 213 |
-
# max_tokens=512,
|
| 214 |
-
# )
|
| 215 |
-
|
| 216 |
-
# # Check interrupt before generation
|
| 217 |
-
# if generation_interrupt.is_set():
|
| 218 |
-
# result_queue.put("")
|
| 219 |
-
# return
|
| 220 |
-
# # Generate the response
|
| 221 |
-
# outputs = llm.chat(
|
| 222 |
-
# text_input,
|
| 223 |
-
# sampling_params=params,
|
| 224 |
-
# # stopping_criteria=StoppingCriteriaList([InterruptCriteria(generation_interrupt)]),
|
| 225 |
-
# )
|
| 226 |
-
# # Check interrupt immediately after generation finishes or stops
|
| 227 |
-
result_queue.put(result)
|
| 228 |
|
| 229 |
except Exception as e:
|
| 230 |
-
print(f"Error in inference
|
| 231 |
-
|
| 232 |
-
result_queue.put(f"Error generating response: {str(e)[:200]}...")
|
| 233 |
|
| 234 |
finally:
|
| 235 |
-
# Clean up resources
|
| 236 |
-
del model
|
| 237 |
-
del tokenizer
|
| 238 |
-
del text_input
|
| 239 |
-
del outputs
|
| 240 |
if torch.cuda.is_available():
|
| 241 |
-
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
| 6 |
from transformers import pipeline, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
|
| 7 |
from .prompts import format_rag_prompt
|
| 8 |
from .shared import generation_interrupt
|
| 9 |
+
|
|
|
|
|
|
|
|
|
|
| 10 |
models = {
|
| 11 |
"Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
|
| 12 |
"Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
|
|
|
|
| 24 |
def __call__(self, input_ids, scores, **kwargs):
|
| 25 |
return self.interrupt_event.is_set()
|
| 26 |
|
| 27 |
+
@spaces.GPU
|
| 28 |
def generate_summaries(example, model_a_name, model_b_name):
|
| 29 |
"""
|
| 30 |
+
Generates summaries for the given example using the assigned models sequentially.
|
| 31 |
"""
|
| 32 |
if generation_interrupt.is_set():
|
| 33 |
return "", ""
|
|
|
|
| 47 |
if generation_interrupt.is_set():
|
| 48 |
return "", ""
|
| 49 |
|
| 50 |
+
# Run model A
|
| 51 |
+
summary_a = run_inference(models[model_a_name], context_text, question)
|
| 52 |
+
|
| 53 |
+
if generation_interrupt.is_set():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
return summary_a, ""
|
| 55 |
+
|
| 56 |
+
# Run model B
|
| 57 |
+
summary_b = run_inference(models[model_b_name], context_text, question)
|
| 58 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return summary_a, summary_b
|
| 60 |
|
|
|
|
|
|
|
| 61 |
@spaces.GPU
|
| 62 |
+
def run_inference(model_name, context, question):
|
| 63 |
"""
|
| 64 |
+
Run inference using the specified model.
|
| 65 |
+
Returns the generated text or empty string if interrupted.
|
| 66 |
"""
|
| 67 |
+
# Check interrupt at the beginning
|
| 68 |
if generation_interrupt.is_set():
|
| 69 |
+
return ""
|
|
|
|
| 70 |
|
| 71 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
| 72 |
result = ""
|
| 73 |
|
| 74 |
try:
|
|
|
|
| 77 |
"System role not supported" not in tokenizer.chat_template
|
| 78 |
if tokenizer.chat_template else False # Handle missing chat_template
|
| 79 |
)
|
|
|
|
| 80 |
|
| 81 |
if tokenizer.pad_token is None:
|
| 82 |
tokenizer.pad_token = tokenizer.eos_token
|
| 83 |
|
| 84 |
# Check interrupt before loading the model
|
| 85 |
if generation_interrupt.is_set():
|
| 86 |
+
return ""
|
|
|
|
| 87 |
|
| 88 |
pipe = pipeline(
|
| 89 |
"text-generation",
|
|
|
|
| 96 |
top_p=0.9,
|
| 97 |
)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
text_input = format_rag_prompt(question, context, accepts_sys)
|
| 100 |
|
| 101 |
+
# Check interrupt before generation
|
| 102 |
if generation_interrupt.is_set():
|
| 103 |
+
return ""
|
| 104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
outputs = pipe(text_input, max_new_tokens=512)
|
| 106 |
result = outputs[0]['generated_text'][-1]['content']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
+
print(f"Error in inference for {model_name}: {e}")
|
| 110 |
+
result = f"Error generating response: {str(e)[:200]}..."
|
|
|
|
| 111 |
|
| 112 |
finally:
|
| 113 |
+
# Clean up resources
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
if torch.cuda.is_available():
|
| 115 |
+
torch.cuda.empty_cache()
|
| 116 |
+
|
| 117 |
+
return result
|