Spaces:
Running
on
Zero
Running
on
Zero
Component to store vote details to a csv (#8)
Browse files- Component to store vote details to a csv (bd9b954f2fea7eab00e1bc7c3b484255b95f6c04)
Co-authored-by: Kai <[email protected]>
- utils/vote_logger.py +121 -0
utils/vote_logger.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
+
from datetime import datetime
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
def save_vote_details(example, model_a, model_b, winner, feedback, summary_a, summary_b):
|
8 |
+
"""
|
9 |
+
Save detailed vote information to CSV file for future analysis.
|
10 |
+
|
11 |
+
Parameters:
|
12 |
+
- example: The question and context information
|
13 |
+
- model_a, model_b: Names of models being compared
|
14 |
+
- winner: 'left', 'right', 'tie', or 'neither' indicating the vote result
|
15 |
+
- feedback: List of feedback options selected by the user
|
16 |
+
- summary_a, summary_b: The model outputs (summaries)
|
17 |
+
"""
|
18 |
+
# Prepare the vote details record
|
19 |
+
vote_record = {
|
20 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
21 |
+
"model_a": model_a,
|
22 |
+
"model_b": model_b,
|
23 |
+
"winner": winner,
|
24 |
+
"feedback": json.dumps(feedback),
|
25 |
+
"question_id": example.get("id", "unknown"),
|
26 |
+
"question": example.get("question", ""),
|
27 |
+
"insufficient_context": example.get("insufficient", False),
|
28 |
+
"summary_a": summary_a,
|
29 |
+
"summary_b": summary_b
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define the path to the CSV file
|
33 |
+
csv_path = os.path.join('utils', 'vote_details.csv')
|
34 |
+
file_exists = os.path.exists(csv_path)
|
35 |
+
|
36 |
+
try:
|
37 |
+
# Open the file in append mode
|
38 |
+
with open(csv_path, 'a', newline='', encoding='utf-8') as f:
|
39 |
+
writer = csv.DictWriter(f, fieldnames=vote_record.keys())
|
40 |
+
|
41 |
+
# Write header if file doesn't exist
|
42 |
+
if not file_exists:
|
43 |
+
writer.writeheader()
|
44 |
+
|
45 |
+
# Write the vote record
|
46 |
+
writer.writerow(vote_record)
|
47 |
+
|
48 |
+
print(f"Vote details saved to {csv_path}")
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error saving vote details: {e}")
|
51 |
+
|
52 |
+
# Create a backup copy every 10 votes
|
53 |
+
try:
|
54 |
+
if os.path.exists(csv_path):
|
55 |
+
with open(csv_path, 'r', encoding='utf-8') as f:
|
56 |
+
num_votes = sum(1 for _ in f) - 1 # Subtract 1 for header
|
57 |
+
|
58 |
+
if num_votes % 10 == 0:
|
59 |
+
backup_path = os.path.join('utils', f'vote_details_backup_{datetime.now().strftime("%Y%m%d_%H%M%S")}.csv')
|
60 |
+
with open(csv_path, 'r', encoding='utf-8') as src, open(backup_path, 'w', encoding='utf-8') as dst:
|
61 |
+
dst.write(src.read())
|
62 |
+
print(f"Created backup at {backup_path}")
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error creating backup: {e}")
|
65 |
+
|
66 |
+
def get_vote_statistics():
|
67 |
+
"""
|
68 |
+
Analyze vote details and provide statistics.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
- Dictionary of statistics about votes
|
72 |
+
"""
|
73 |
+
csv_path = os.path.join('utils', 'vote_details.csv')
|
74 |
+
|
75 |
+
if not os.path.exists(csv_path):
|
76 |
+
return {"error": "No vote data available"}
|
77 |
+
|
78 |
+
try:
|
79 |
+
# Read the CSV into a DataFrame
|
80 |
+
df = pd.read_csv(csv_path)
|
81 |
+
|
82 |
+
# Basic statistics
|
83 |
+
stats = {
|
84 |
+
"total_votes": len(df),
|
85 |
+
"winner_distribution": {
|
86 |
+
"left": len(df[df['winner'] == 'left']),
|
87 |
+
"right": len(df[df['winner'] == 'right']),
|
88 |
+
"tie": len(df[df['winner'] == 'tie']),
|
89 |
+
"neither": len(df[df['winner'] == 'neither'])
|
90 |
+
},
|
91 |
+
"model_appearances": {},
|
92 |
+
"model_wins": {},
|
93 |
+
"feedback_frequency": {}
|
94 |
+
}
|
95 |
+
|
96 |
+
# Count model appearances and wins
|
97 |
+
for model in set(list(df['model_a']) + list(df['model_b'])):
|
98 |
+
a_appearances = len(df[df['model_a'] == model])
|
99 |
+
b_appearances = len(df[df['model_b'] == model])
|
100 |
+
stats["model_appearances"][model] = a_appearances + b_appearances
|
101 |
+
|
102 |
+
a_wins = len(df[(df['model_a'] == model) & (df['winner'] == 'left')])
|
103 |
+
b_wins = len(df[(df['model_b'] == model) & (df['winner'] == 'right')])
|
104 |
+
stats["model_wins"][model] = a_wins + b_wins
|
105 |
+
|
106 |
+
# Process feedback
|
107 |
+
all_feedback = []
|
108 |
+
for feedback_json in df['feedback']:
|
109 |
+
try:
|
110 |
+
feedback_list = json.loads(feedback_json)
|
111 |
+
all_feedback.extend(feedback_list)
|
112 |
+
except:
|
113 |
+
pass
|
114 |
+
|
115 |
+
for feedback in all_feedback:
|
116 |
+
stats["feedback_frequency"][feedback] = stats["feedback_frequency"].get(feedback, 0) + 1
|
117 |
+
|
118 |
+
return stats
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
return {"error": f"Error analyzing vote data: {e}"}
|