Spaces:
Running
on
Zero
Running
on
Zero
Implemented elo (#6)
Browse files- Implemented elo (8878917366baff6fee97ed2bf699891a4e393b0e)
Co-authored-by: Kai <[email protected]>
- utils/leaderboard.py +311 -17
utils/leaderboard.py
CHANGED
|
@@ -1,19 +1,99 @@
|
|
| 1 |
import os
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
| 4 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def load_leaderboard_data():
|
| 7 |
"""
|
| 8 |
Loads the leaderboard data from the leaderboard CSV file.
|
| 9 |
Returns the data in a format compatible with the application.
|
| 10 |
"""
|
| 11 |
-
# Initialize the results structure
|
| 12 |
-
results = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
try:
|
| 15 |
# Define the path to the CSV file for leaderboard
|
| 16 |
-
csv_path = os.path.join('utils', '
|
| 17 |
|
| 18 |
# Check if the file exists and load it
|
| 19 |
if os.path.exists(csv_path):
|
|
@@ -25,52 +105,266 @@ def load_leaderboard_data():
|
|
| 25 |
results["wins"][model] = row['wins']
|
| 26 |
results["losses"][model] = row['losses']
|
| 27 |
results["ties"][model] = row['ties']
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Calculate total votes
|
| 30 |
for model in results["wins"].keys():
|
| 31 |
results["votes"] += results["wins"][model] + results["losses"][model] + results["ties"][model] // 2
|
| 32 |
else:
|
| 33 |
-
# If file doesn't exist, pre-populate with some data
|
|
|
|
| 34 |
for model in model_names:
|
| 35 |
-
results["wins"][model] =
|
| 36 |
-
results["losses"][model] =
|
| 37 |
-
results["ties"][model] =
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
# Calculate total votes
|
| 40 |
-
for model in model_names:
|
| 41 |
-
results["votes"] += results["wins"][model] + results["losses"][model] + results["ties"][model] // 2
|
| 42 |
-
|
| 43 |
return results
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Error loading leaderboard data: {e}")
|
| 46 |
# Return the initialized structure if file can't be loaded
|
| 47 |
return results
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def save_leaderboard_data(results):
|
| 50 |
"""
|
| 51 |
Saves the current leaderboard results back to the CSV file.
|
| 52 |
|
| 53 |
Parameters:
|
| 54 |
-
- results: The results dictionary
|
| 55 |
"""
|
| 56 |
try:
|
| 57 |
# Define the path to the CSV file
|
| 58 |
-
csv_path = os.path.join('utils', '
|
| 59 |
|
| 60 |
# Convert the results dictionary to a DataFrame
|
| 61 |
data = []
|
| 62 |
-
for model in results["
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
data.append({
|
| 64 |
'model': model,
|
|
|
|
| 65 |
'wins': results["wins"].get(model, 0),
|
| 66 |
'losses': results["losses"].get(model, 0),
|
| 67 |
-
'ties': results["ties"].get(model, 0)
|
|
|
|
|
|
|
| 68 |
})
|
| 69 |
|
| 70 |
df = pd.DataFrame(data)
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
# Save to CSV
|
| 73 |
df.to_csv(csv_path, index=False)
|
| 74 |
print(f"Leaderboard data saved successfully to {csv_path}")
|
| 75 |
except Exception as e:
|
| 76 |
print(f"Error saving leaderboard data: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import pandas as pd
|
| 3 |
+
import math
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
# Default K-factor (determines how much a single match affects ratings)
|
| 7 |
+
DEFAULT_K_FACTOR = 32
|
| 8 |
+
|
| 9 |
+
# Default starting Elo
|
| 10 |
+
DEFAULT_ELO = 1500
|
| 11 |
+
|
| 12 |
+
# Mapping of model names to their Hugging Face URLs
|
| 13 |
+
model_to_hf = {
|
| 14 |
+
"Qwen2.5-1.5b-Instruct": "https://huggingface.co/qwen/qwen2.5-1.5b-instruct",
|
| 15 |
+
"Qwen2.5-3b-Instruct": "https://huggingface.co/qwen/qwen2.5-3b-instruct",
|
| 16 |
+
# Add more models and their HF links here
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
def calculate_elo_changes(winner_rating, loser_rating, k_factor=DEFAULT_K_FACTOR, draw=False):
|
| 20 |
+
"""
|
| 21 |
+
Calculate Elo rating changes for two models.
|
| 22 |
+
|
| 23 |
+
Parameters:
|
| 24 |
+
- winner_rating: Winner's current rating
|
| 25 |
+
- loser_rating: Loser's current rating
|
| 26 |
+
- k_factor: How much a single match affects ratings
|
| 27 |
+
- draw: Whether the match was a draw
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
- (winner_change, loser_change): Rating changes to apply
|
| 31 |
+
"""
|
| 32 |
+
# Calculate expected scores (probability of winning)
|
| 33 |
+
expected_winner = 1 / (1 + 10 ** ((loser_rating - winner_rating) / 400))
|
| 34 |
+
expected_loser = 1 / (1 + 10 ** ((winner_rating - loser_rating) / 400))
|
| 35 |
+
|
| 36 |
+
if draw:
|
| 37 |
+
# For a draw, both get 0.5 points
|
| 38 |
+
actual_winner = 0.5
|
| 39 |
+
actual_loser = 0.5
|
| 40 |
+
else:
|
| 41 |
+
# For a win, winner gets 1 point, loser gets 0
|
| 42 |
+
actual_winner = 1.0
|
| 43 |
+
actual_loser = 0.0
|
| 44 |
+
|
| 45 |
+
# Calculate rating changes
|
| 46 |
+
winner_change = k_factor * (actual_winner - expected_winner)
|
| 47 |
+
loser_change = k_factor * (actual_loser - expected_loser)
|
| 48 |
+
|
| 49 |
+
return winner_change, loser_change
|
| 50 |
+
|
| 51 |
+
def calculate_confidence_interval(elo_rating, num_games, confidence=0.95):
|
| 52 |
+
"""
|
| 53 |
+
Calculate a confidence interval for an Elo rating.
|
| 54 |
+
|
| 55 |
+
Parameters:
|
| 56 |
+
- elo_rating: The current Elo rating
|
| 57 |
+
- num_games: Number of games played
|
| 58 |
+
- confidence: Confidence level (default: 0.95 for 95% confidence)
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
- margin: The margin of error for the confidence interval
|
| 62 |
+
"""
|
| 63 |
+
if num_games == 0:
|
| 64 |
+
return float('inf')
|
| 65 |
+
|
| 66 |
+
# Z-score for the given confidence level (1.96 for 95% confidence)
|
| 67 |
+
z = 1.96 if confidence == 0.95 else 1.645 if confidence == 0.90 else 2.576 if confidence == 0.99 else 1.96
|
| 68 |
+
|
| 69 |
+
# Standard deviation of the Elo rating
|
| 70 |
+
# The factor 400/sqrt(num_games) is a common approximation
|
| 71 |
+
std_dev = 400 / math.sqrt(num_games)
|
| 72 |
+
|
| 73 |
+
# Margin of error
|
| 74 |
+
margin = z * std_dev
|
| 75 |
+
|
| 76 |
+
return margin
|
| 77 |
|
| 78 |
def load_leaderboard_data():
|
| 79 |
"""
|
| 80 |
Loads the leaderboard data from the leaderboard CSV file.
|
| 81 |
Returns the data in a format compatible with the application.
|
| 82 |
"""
|
| 83 |
+
# Initialize the results structure with both win/loss/tie counts and Elo ratings
|
| 84 |
+
results = {
|
| 85 |
+
"wins": {},
|
| 86 |
+
"losses": {},
|
| 87 |
+
"ties": {},
|
| 88 |
+
"votes": 0,
|
| 89 |
+
"elo": {},
|
| 90 |
+
"games_played": {},
|
| 91 |
+
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 92 |
+
}
|
| 93 |
|
| 94 |
try:
|
| 95 |
# Define the path to the CSV file for leaderboard
|
| 96 |
+
csv_path = os.path.join('utils', 'arena_elo_leaderboard.csv')
|
| 97 |
|
| 98 |
# Check if the file exists and load it
|
| 99 |
if os.path.exists(csv_path):
|
|
|
|
| 105 |
results["wins"][model] = row['wins']
|
| 106 |
results["losses"][model] = row['losses']
|
| 107 |
results["ties"][model] = row['ties']
|
| 108 |
+
results["elo"][model] = row['elo']
|
| 109 |
+
results["games_played"][model] = row['games_played']
|
| 110 |
|
| 111 |
# Calculate total votes
|
| 112 |
for model in results["wins"].keys():
|
| 113 |
results["votes"] += results["wins"][model] + results["losses"][model] + results["ties"][model] // 2
|
| 114 |
else:
|
| 115 |
+
# If file doesn't exist, pre-populate with some reasonable data
|
| 116 |
+
from .models import model_names
|
| 117 |
for model in model_names:
|
| 118 |
+
results["wins"][model] = 0
|
| 119 |
+
results["losses"][model] = 0
|
| 120 |
+
results["ties"][model] = 0
|
| 121 |
+
results["elo"][model] = DEFAULT_ELO # Start everyone at 1500 Elo
|
| 122 |
+
results["games_played"][model] = 0
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
return results
|
| 125 |
except Exception as e:
|
| 126 |
print(f"Error loading leaderboard data: {e}")
|
| 127 |
# Return the initialized structure if file can't be loaded
|
| 128 |
return results
|
| 129 |
|
| 130 |
+
def update_elo_ratings(results, model_a, model_b, winner, k_factor=DEFAULT_K_FACTOR):
|
| 131 |
+
"""
|
| 132 |
+
Updates Elo ratings based on a match result.
|
| 133 |
+
|
| 134 |
+
Parameters:
|
| 135 |
+
- results: The current leaderboard results dictionary
|
| 136 |
+
- model_a: Name of model A
|
| 137 |
+
- model_b: Name of model B
|
| 138 |
+
- winner: 'left' for model A, 'right' for model B, 'tie' for a tie, 'neither' for no winner
|
| 139 |
+
- k_factor: How much this match affects ratings
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
- Updated results dictionary
|
| 143 |
+
"""
|
| 144 |
+
# Initialize ratings if not present
|
| 145 |
+
if model_a not in results["elo"]:
|
| 146 |
+
results["elo"][model_a] = DEFAULT_ELO
|
| 147 |
+
results["games_played"][model_a] = 0
|
| 148 |
+
|
| 149 |
+
if model_b not in results["elo"]:
|
| 150 |
+
results["elo"][model_b] = DEFAULT_ELO
|
| 151 |
+
results["games_played"][model_b] = 0
|
| 152 |
+
|
| 153 |
+
# Get current ratings
|
| 154 |
+
rating_a = results["elo"][model_a]
|
| 155 |
+
rating_b = results["elo"][model_b]
|
| 156 |
+
|
| 157 |
+
# Handle different winning scenarios
|
| 158 |
+
if winner == 'left':
|
| 159 |
+
# Model A won
|
| 160 |
+
change_a, change_b = calculate_elo_changes(rating_a, rating_b, k_factor, draw=False)
|
| 161 |
+
results["wins"][model_a] = results["wins"].get(model_a, 0) + 1
|
| 162 |
+
results["losses"][model_b] = results["losses"].get(model_b, 0) + 1
|
| 163 |
+
elif winner == 'right':
|
| 164 |
+
# Model B won
|
| 165 |
+
change_b, change_a = calculate_elo_changes(rating_b, rating_a, k_factor, draw=False)
|
| 166 |
+
results["wins"][model_b] = results["wins"].get(model_b, 0) + 1
|
| 167 |
+
results["losses"][model_a] = results["losses"].get(model_a, 0) + 1
|
| 168 |
+
elif winner == 'tie':
|
| 169 |
+
# It's a tie
|
| 170 |
+
change_a, change_b = calculate_elo_changes(rating_a, rating_b, k_factor, draw=True)
|
| 171 |
+
results["ties"][model_a] = results["ties"].get(model_a, 0) + 1
|
| 172 |
+
results["ties"][model_b] = results["ties"].get(model_b, 0) + 1
|
| 173 |
+
else: # 'neither' case - no winner
|
| 174 |
+
# No rating changes, but still log the game
|
| 175 |
+
change_a, change_b = 0, 0
|
| 176 |
+
|
| 177 |
+
# Apply rating changes
|
| 178 |
+
results["elo"][model_a] = rating_a + change_a
|
| 179 |
+
results["elo"][model_b] = rating_b + change_b
|
| 180 |
+
|
| 181 |
+
# Update games played counters
|
| 182 |
+
results["games_played"][model_a] = results["games_played"].get(model_a, 0) + 1
|
| 183 |
+
results["games_played"][model_b] = results["games_played"].get(model_b, 0) + 1
|
| 184 |
+
|
| 185 |
+
# Update timestamp
|
| 186 |
+
results["last_updated"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 187 |
+
|
| 188 |
+
return results
|
| 189 |
+
|
| 190 |
def save_leaderboard_data(results):
|
| 191 |
"""
|
| 192 |
Saves the current leaderboard results back to the CSV file.
|
| 193 |
|
| 194 |
Parameters:
|
| 195 |
+
- results: The results dictionary with wins, losses, ties, elo, etc.
|
| 196 |
"""
|
| 197 |
try:
|
| 198 |
# Define the path to the CSV file
|
| 199 |
+
csv_path = os.path.join('utils', 'arena_elo_leaderboard.csv')
|
| 200 |
|
| 201 |
# Convert the results dictionary to a DataFrame
|
| 202 |
data = []
|
| 203 |
+
for model in results["elo"].keys():
|
| 204 |
+
# Calculate confidence interval
|
| 205 |
+
games_played = results["games_played"].get(model, 0)
|
| 206 |
+
confidence_interval = calculate_confidence_interval(results["elo"][model], games_played)
|
| 207 |
+
|
| 208 |
data.append({
|
| 209 |
'model': model,
|
| 210 |
+
'elo': round(results["elo"].get(model, DEFAULT_ELO), 1),
|
| 211 |
'wins': results["wins"].get(model, 0),
|
| 212 |
'losses': results["losses"].get(model, 0),
|
| 213 |
+
'ties': results["ties"].get(model, 0),
|
| 214 |
+
'games_played': results["games_played"].get(model, 0),
|
| 215 |
+
'confidence_interval': round(confidence_interval, 1)
|
| 216 |
})
|
| 217 |
|
| 218 |
df = pd.DataFrame(data)
|
| 219 |
|
| 220 |
+
# Sort by Elo rating (descending)
|
| 221 |
+
df = df.sort_values(by='elo', ascending=False)
|
| 222 |
+
|
| 223 |
# Save to CSV
|
| 224 |
df.to_csv(csv_path, index=False)
|
| 225 |
print(f"Leaderboard data saved successfully to {csv_path}")
|
| 226 |
except Exception as e:
|
| 227 |
print(f"Error saving leaderboard data: {e}")
|
| 228 |
+
|
| 229 |
+
def generate_leaderboard_html(results):
|
| 230 |
+
"""
|
| 231 |
+
Generate HTML for displaying the leaderboard with Elo ratings.
|
| 232 |
+
|
| 233 |
+
Parameters:
|
| 234 |
+
- results: The current leaderboard results dictionary
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
- HTML string for the leaderboard
|
| 238 |
+
"""
|
| 239 |
+
# Prepare model data for the HTML table
|
| 240 |
+
model_data = []
|
| 241 |
+
for model in results["elo"]:
|
| 242 |
+
elo = results["elo"].get(model, DEFAULT_ELO)
|
| 243 |
+
wins = results["wins"].get(model, 0)
|
| 244 |
+
losses = results["losses"].get(model, 0)
|
| 245 |
+
ties = results["ties"].get(model, 0)
|
| 246 |
+
total_comparisons = wins + losses + ties
|
| 247 |
+
win_rate = (wins + 0.5 * ties) / total_comparisons if total_comparisons > 0 else 0.0
|
| 248 |
+
|
| 249 |
+
# Calculate confidence interval
|
| 250 |
+
games_played = results["games_played"].get(model, 0)
|
| 251 |
+
confidence = calculate_confidence_interval(elo, games_played)
|
| 252 |
+
|
| 253 |
+
model_data.append({
|
| 254 |
+
"model": model,
|
| 255 |
+
"elo": elo,
|
| 256 |
+
"wins": wins,
|
| 257 |
+
"losses": losses,
|
| 258 |
+
"ties": ties,
|
| 259 |
+
"comparisons": total_comparisons,
|
| 260 |
+
"win_rate": win_rate,
|
| 261 |
+
"confidence": confidence
|
| 262 |
+
})
|
| 263 |
+
|
| 264 |
+
# Sort by Elo rating
|
| 265 |
+
model_data.sort(key=lambda x: x["elo"], reverse=True)
|
| 266 |
+
|
| 267 |
+
# Start building HTML table
|
| 268 |
+
html = """
|
| 269 |
+
<table class="leaderboard-table">
|
| 270 |
+
<thead>
|
| 271 |
+
<tr>
|
| 272 |
+
<th class="centered">Rank</th>
|
| 273 |
+
<th>Model</th>
|
| 274 |
+
<th>Elo Rating</th>
|
| 275 |
+
<th class="centered">Win Rate (%)</th>
|
| 276 |
+
<th class="centered">Wins</th>
|
| 277 |
+
<th class="centered">Losses</th>
|
| 278 |
+
<th class="centered">Ties</th>
|
| 279 |
+
<th class="centered">Comparisons</th>
|
| 280 |
+
</tr>
|
| 281 |
+
</thead>
|
| 282 |
+
<tbody>
|
| 283 |
+
"""
|
| 284 |
+
|
| 285 |
+
# Add rows to the HTML table
|
| 286 |
+
for rank, data in enumerate(model_data, 1):
|
| 287 |
+
model = data["model"]
|
| 288 |
+
elo = data["elo"]
|
| 289 |
+
wins = data["wins"]
|
| 290 |
+
losses = data["losses"]
|
| 291 |
+
ties = data["ties"]
|
| 292 |
+
comparisons = data["comparisons"]
|
| 293 |
+
win_rate = data["win_rate"]
|
| 294 |
+
confidence = data["confidence"]
|
| 295 |
+
|
| 296 |
+
# Create model link if in the mapping
|
| 297 |
+
if model in model_to_hf:
|
| 298 |
+
model_html = f'<a href="{model_to_hf[model]}" target="_blank" rel="noopener noreferrer" class="model-link">{model}<span class="external-icon">↗</span></a>'
|
| 299 |
+
else:
|
| 300 |
+
model_html = model
|
| 301 |
+
|
| 302 |
+
# Format Elo with confidence interval
|
| 303 |
+
elo_html = f"{elo:.1f} <span class='confidence-value'>± {confidence:.1f}</span>"
|
| 304 |
+
|
| 305 |
+
# Add row to table
|
| 306 |
+
html += f"""
|
| 307 |
+
<tr>
|
| 308 |
+
<td class="centered"><strong>{rank}</strong></td>
|
| 309 |
+
<td>{model_html}</td>
|
| 310 |
+
<td class="elo-col">{elo_html}</td>
|
| 311 |
+
<td class="centered">{win_rate:.1%}</td>
|
| 312 |
+
<td class="centered">{wins}</td>
|
| 313 |
+
<td class="centered">{losses}</td>
|
| 314 |
+
<td class="centered">{ties}</td>
|
| 315 |
+
<td class="centered">{comparisons}</td>
|
| 316 |
+
</tr>
|
| 317 |
+
"""
|
| 318 |
+
|
| 319 |
+
# Close the HTML table
|
| 320 |
+
html += """
|
| 321 |
+
</tbody>
|
| 322 |
+
</table>
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
return html
|
| 326 |
+
|
| 327 |
+
def submit_vote_with_elo(m_a, m_b, winner, feedback, current_results):
|
| 328 |
+
"""
|
| 329 |
+
Enhanced version of submit_vote that calculates and applies Elo rating changes.
|
| 330 |
+
This replaces the original submit_vote_fixed function.
|
| 331 |
+
|
| 332 |
+
Parameters:
|
| 333 |
+
- m_a: Model A name
|
| 334 |
+
- m_b: Model B name
|
| 335 |
+
- winner: 'left', 'right', 'tie', or 'neither'
|
| 336 |
+
- feedback: List of feedback options selected
|
| 337 |
+
- current_results: The current leaderboard state
|
| 338 |
+
|
| 339 |
+
Returns:
|
| 340 |
+
- Updated results and UI components
|
| 341 |
+
"""
|
| 342 |
+
if winner is None:
|
| 343 |
+
print("Warning: Submit called without a winner selected.")
|
| 344 |
+
return {}
|
| 345 |
+
|
| 346 |
+
# Update Elo ratings
|
| 347 |
+
updated_results = update_elo_ratings(current_results.copy(), m_a, m_b, winner)
|
| 348 |
+
|
| 349 |
+
# Update vote count
|
| 350 |
+
updated_results["votes"] = updated_results.get("votes", 0) + 1
|
| 351 |
+
|
| 352 |
+
# Save updated results
|
| 353 |
+
save_leaderboard_data(updated_results)
|
| 354 |
+
|
| 355 |
+
# Generate HTML leaderboard
|
| 356 |
+
leaderboard_html = generate_leaderboard_html(updated_results)
|
| 357 |
+
|
| 358 |
+
# Import gradio for the gr.update objects
|
| 359 |
+
import gradio as gr
|
| 360 |
+
|
| 361 |
+
return [
|
| 362 |
+
True, updated_results,
|
| 363 |
+
gr.update(interactive=False), gr.update(interactive=False),
|
| 364 |
+
gr.update(interactive=False), gr.update(interactive=False),
|
| 365 |
+
gr.update(interactive=False), gr.update(visible=True),
|
| 366 |
+
gr.update(visible=False), gr.update(visible=True),
|
| 367 |
+
gr.update(interactive=False), gr.update(value=leaderboard_html, visible=True),
|
| 368 |
+
gr.update(elem_classes=["results-revealed"]),
|
| 369 |
+
gr.update(interactive=True), gr.update(value=m_a), gr.update(value=m_b)
|
| 370 |
+
]
|